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Abstract

We investigate the constancy of the Lê numbers of one parameter
deformations F : (C×Cn, 0)→ (C, 0) of holomorphic germs of func-
tions f : (Cn, 0)→ (C, 0) which have singular set with any dimension
s ≥ 1. We characterize Lê constant deformations in terms of the
non-splitting of the polar varieties and also from the integral closure
of the ideal Jz(F ) in On+1 generated by the partial derivatives of F
with respect to the variables z = (z1, . . . , zn).
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1. Introduction

By a celebrate result of Lê and Ramanujam given in 1976, the constancy of
a single numerical invariant, the Milnor number µ, in members of a given
1-parameter family of hypersurface with isolated singularities, implies topo-
logical triviality of the family. More precisely, µ is a topological invariant
in the following sense, let Xt be a family of n-dimensional hypersurfaces in
Cn+1, with n 6= 2, such that each Xt has isolated singularity at 0 and µ(Xt)
is independent of t, then the local topological type of the hypersurfaces at
0 must be constant [6].

Therefore the characterization of families of isolated singularity hyper-
surfaces with constant Milnor number has become one of the main question
in Singularity Theory and in the 80’s several authors worked on the char-
acterization of such families.

Greuel shows in [4, p.161] a full characterization, done by Greuel, Lê,
Saito and Teissier, of Milnor constant deformations of germs of hypersufaces
with isolated singularity in terms of the integral closure of the Jacobian ideal
and also by a non-splitting condition of the polar curve of the deformation.

Nowadays, the search for equisingularity conditions for families of hy-
persurfaces with singular set having dimension bigger than zero is one of
the main question of interest in Singularity Theory.

For handling such non-isolated hypersurface singularities, there is avail-
able the machinery of Lê numbers, developed by Massey in [9]. To any given
analytic function with a singular locus of arbitrary dimension s, there are
λ0, ..., λs numbers, which perform together, a role roughly analogous to that
of the Milnor number in the case s = 0.

Therefore, an interesting question is to characterize families of germs
of non-isolated hypersurface singularities which are Lê constant, i.e, which
have constant Lê numbers in a neighborhood of the origin. As in the result
for isolated singularities, we are looking for conditions in terms of the non-
splitting of the singular set of the deformation and also in terms of the
integral closure of the Jacobian ideal of the deformation.

In the first part of this article we describe the results for the case of iso-
lated singularity, in special the theorem of Greuel, and show some examples.
Then we show the basic definitions of Lê numbers and polar multiplicities,
these concepts are the necessary machinery to show our main result and
were developed by Massey in [9]. The third part is for the main results of
the article and in the Corollary 4.2 we show that Greuel’s results extend
for families of hypersurfaces with singular set of any dimension. We remark
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that in order to obtain this generalization we need a new condition which
does not appear in the case of isolated singularity.

2. Milnor constant deformations

We describe here the results of Greuel in [4] for the constancy of the Milnor
number of families of hypersufaces with isolated singularity.

In a general set-up, let F : (C × Cn, 0) → (C, 0), F (x, t) = f(x) +P
s=1 δs(t)gs(x) be a one parameter deformation of a holomorphic germ

f : (Cn, 0)→ (C, 0) where δs : (C, 0)→ (C, 0) and gs : (C
n, 0)→ (C, 0) are

holomorphic germs of functions and δs 6= 0.
Denote by Jz(F ) = h∂F/∂z1, . . . , ∂F/∂zni, the ideal in On+1 generated

by the partial derivatives of F with respect to the variables z1, . . . , zn and
J(F ) denotes the Jacobian ideal of F in
On+1, J(F ) = h∂F/∂t, ∂F/∂z1, . . . , ∂F/∂zni. As usual

p
Jz(F ) denotes the

radical of Jz(F ); Jz(F ) denotes the integral closure of Jz(F ) and Jz(F )
+

denotes the strict integral closure of Jz(F ), see [2] or [3] for the definition
of strict integral closure of an ideal.

If each germ ft has isolated singularity at zero, F is said to be Milnor
constant if the Milnor number µ(f) is independent of t for small values of
t.

Theorem 2.1. (Greuel, Kuo, Lê, Saito and Teissier) [4, p.161] Suppose
that each germ ft has isolated singularity at zero, then following statements
are equivalent:

1. F is a Milnor constant deformation of f ;

2. ∂F
∂t ∈ Jz(F )

+
;

3. ∂F
∂t ∈ Jz(F );

4. ∂F
∂t ∈

p
Jz(F ),

5. the polar curve of F with respect to {t = 0} does not split near (0, 0),
or

V (Jz(F )) =

½
(z, t) ∈ Cn+1 ×C | ∂F

∂zi
(z, t) = 0,∀i = 1, . . . , n

¾
= {0} ×C.

Example 2.2. In order to better illustrate this theorem, consider the fam-
ily ft(x, y) = −x3 + y2 − tx2. Here the Milnor number of f0 at (0, 0) is
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µ(f0(0, 0)) = 2 and the Milnor number of ft at (0, 0) is µ(ft(0, 0)) = 1,
therefore the family ft is not Milnor constant in a neighborhood of (0, 0).

The main difference between the geometry of f0 and ft with t 6= 0 is
that the singular set of f0(x, y) = −x3 + y2 has one point Σ(f0) = {(0, 0)}
and the singular set of each ft(x, y) = −x3 + y2 − tx2 has two points
Σ(ft) = {(0, 0) ∪ (−2/3t, 0)}. In this case we see clearly that the singular
set of f0 splits in two points for ft with t 6= 0. We remark that at the point
P = (−2/3t, 0) the Milnor number of ft is µ(ft((−2/3t, 0)) = 1.

If we consider the deformation F : (C × C2, 0) → (C, 0), F (t, y, x) =
−x3+y2−tx2, the singular set of F inC×C2 is Σ(F ) = C×0 = V (x, y). As
Σ(F ) is one dimensional we can have associated to it the polar curve of F at
(0, 0, 0) with respect to the parameter t, defined as Γ1(F ) = V (Jz(F ))/Σ(F )
( see 3.2 for the definition of the polar varieties). In this example Γ1(F ) =
{(t,−2/3t, 0)} is not empty, hence V (Jz(F )) = Σ(F )∪Γ1(F ) near (0, 0, 0).
Since V (Jz(F )) = ∪Σ(ft) (the union of all singular sets of ft in C3) we get
that ∪Σ(ft) splits in two sets, the singular set and the polar curve of F .

We remark here that an easy calculation shows that the conditions 2.,
3. and 4. also do not hold for this example.

Example 2.3. On the other side we consider the family gt(x, y) = −x3 +
y2 − tx4, here the Milnor number µ(gt) at (0, 0) is constant and the polar
curve of F is empty, or in other words, ∪Σ(ft) = Σ(F ). An easy calculation
shows that the conditions 2., 3. and 4. also hold for this example.

3. Lê numbers of hypersurface singularities

An interesting question is to ask if Greuel’s result extends to families with
singular set having dimension bigger than zero.

For any non-isolated hypersurface singularity there is available the ma-
chinery of Lê numbers. As we see in [9], to any given analytic function
with a singular locus of arbitrary dimension s, there are λ0, ..., λs numbers,
which perform together, a role roughly analogous to that of the Milnor
number in the case s = 0.

Therefore, our purpose is to characterize families of germs of non-
isolated hypersurface singularities which are Lê constant, i.e, which have
constant Lê numbers in a neighborhood of the origin. As in the result
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for isolated singularity, we are looking for conditions in terms of the non-
splitting of the singular set of F and also in terms of the integral closure of
the Jacobian ideal Jz(F ).

We remark that even in the case of one dimensional singular set, the
conditions given by Greuel in the theorem 2.1 are not equivalent at all, as
we can see in the example below.

Example 3.1. Let F : (C×C2, 0)→ (C, 0), F (t, x, y) = y3 − txy2. Here
for all t we have ft : (C

2, 0)→ (C, 0), ft(x, y) = y3− txy2 with singular set
Σ(ft) = V (−ty2,−3y2 − 2txy) = V (y), hence 1-dimensional.

In this example the Lê numbers are not constant at the origin. We
remember that since the singular set of each ft is one dimensional there are
two Lê numbers associated to each ft, named λ0 and λ1, here λ1(f0) = 2
while λ1(ft) = 1 for t 6= 0.

For the second and third conditions, we have ∂f/∂t = xy2 6∈ J(x,y)(F ).
To show this we consider the analytic curve ϕ(λ) = (λ,−2/3λ3, 0, λ2), then
∂F
∂t ◦ ϕ = 4/9λ7 and J(x,y)(F ) ◦ ϕ =< −λ6, 0, 0 > and this implies that

∂f/∂t 6∈ J(x,y)(F ).

However the condition ∂f/∂t ∈
q
J(x,y)(F ) of the theorem 2.1 holds

since x2y4 = (∂f/∂t)2 is in J(x,y)(F ) =< −ty2, 3y2 − 2txy >.

As a consequence of the condition ∂f/∂t ∈
q
J(x,y)(F ) we also have

that Γ1(F ) = ∅ since V (J(x,y)(F )) = Σ(F ) = V (y) and as Γ1(F ) =
V (Jz(F )− V (J(F ), we also obtain that ∪Σ(ft) = Σ(F ).

However, as the singular set of F is 2-dimensional, there is associated
to it the second polar variety Γ2(F ) = V (3y − 2tx) ⊂ C3, here we see that
at t = 0, Γ2(F )|t=0 = V (3y), while on the other side Γ1(f0) = ∅.

As sets we have V (J(x,y)(F )) = Σ(F ) = V (y), but Σ(f0)) = V (y2),
while Σ(F )|t=0 = V (y). In this example we see that the singular set of f0,
which consists of the line y = 0 with multiplicity 2, splits in two sets for
t 6= 0 the singular set and the polar curve of ft.

Now we shall follow the notation of Massey in ([9], pp. 11—15), to define
the Lê numbers of a hypersurface with non-isolated singularities.

Fix a linear choice of local coordinates z = (z0, . . . , zn) ofC
n+1, consider

the ring On+1 of holomorphic germs f : (C
n+1, 0)→ C and denote bymn+1

its maximal ideal. Due to the identification between On+1 and the ring of
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convergent power series C{z0, . . . , zn} we identify a germ f ∈ On+1 with
its power series f(z) =

P
aαz

α, where zα = zα00 . . . zαnn , αi ∈ Z+.

The relative polar varieties are defined for any holomorphic function
germ f : (U, 0)→ (C, 0), where U is an open set of Cn+1.

Definition 3.2. For 0 ≤ k ≤ n, the k− th relative polar variety of f with
respect to the coordinates z = (z0, . . . , zn), which we denote by Γ

k
f,z, is the

scheme V
³
∂f
∂zk

, . . . , ∂f
∂zn

´
/Σ(f).

Remark 3.3. On the level of ideals, Γkf,z consists of the components of the

scheme V
³
∂f
∂zk

, . . . , ∂f
∂zn

´
which are not contained in Σ(f).

As sets we have that Γ0f,z is empty and Γ
0
f,z ⊆ Γ1f,z ⊆ . . .Γn+1f,z = U . If

dimΣ(f) < k, then Γkf,z = V
³
∂f
∂zk

, . . . , ∂f
∂zn

´
.

The polar varieties are not necessarily reduced and the dimension of the
critical locus of f , denoted by Σ(f), is allowed to be arbitrary.

If the intersection of Γkf,z and V (z0 − p0, . . . , zk−1 − pk−1) is purely 0-
dimensional at a point P = (p0, . . . , pn) ∈ (U, 0), i.e., either p is an isolated
point of the intersection or p is not in the intersection, it is possible to
define the k + 1 polar multiplicities.

Definition 3.4. For any point P = (p0, p1, . . . , pn) in C
n+1 and k =

0, . . . , s, the The k-th polar multiplicity of f at P with respect to the
coordinates (z0, . . . , zn) denoted by mk

f,z(P ), is defined as the intersection
number: ³

Γkf,z · V (z0 − p0, . . . , zk−1 − pk−1)
´

The Lê numbers are defined in terms of the Lê varieties and unlike the
polar varieties, the Lê varieties are supported on the critical set of f itself.

Definition 3.5. The k-th Lê variety of f :

Λkf,z =

µ
Γk ∩ V

µ
∂f

∂zk

¶¶
< Σ(f),

where < denotes the components of
³
Γk ∩ V

³
∂f
∂zk

´´
which are in Σ(f).
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If the intersection of Λkf,z and V (z0 − p0, . . . , zk−1 − pk−1) is purely 0-
dimensional at a point p = (p0, . . . , pn), i.e., either p is an isolated point of
the intersection or p is not in the intersection, it is possible to define the
Lê numbers as follows:

Definition 3.6. The k-th Lê number λkf,z(p) at p, is defined as the in-
tersection number: ³

Λkf,z · V (z0 − p0, . . . , zk−1 − pk−1)
´

Note that if λkf,z(p) is defined at P , it is defined at all points near P . If

λkf,z(P ) is defined, then Γ
k
f,z is purely k-dimensional at P and Γkf,z has no

embedded components at P .

A deformation F : (Cn+1×C, 0)→ (C, 0) of f is said to be Lê-constant
if all Lê numbers at 0 of each ft(z) = F (z, t) are constant for small values
of t.

4. Lê constant deformations

We seek now for complementary conditions which guarantee a characteri-
zation of Lê constant families in terms of the integral closure of ideals and
also in terms of the non-splitting of the singular set and consequently will
allow us to generalize Greuel’s result.

Consider F : (Cn+1×C, 0)→ (C, 0) be a one parameter deformation of
a holomorphic germ f : (Cn+1, 0)→ (C, 0) such that for all t in a neighbor-
hood of the origin, dimΣ(ft) = s for some s ≥ 0.

For such F we give next six conditions which will allow us to characterize
the Lê constant deformations.

1. F is a Lê-constant deformation of f ;

2. ∂F
∂t ∈ Jz(F )

+
;

3. ∂F
∂t ∈ Jz(F );

4. ∂F
∂t ∈

p
Jz(F );

5. F satisfies the non-splitting condition, i.é. Σ(ft) = Σ(F ) ∩ V (t) for
all t in a neighborhood of the origin.
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6. For all i = 1, . . . , s, the Lê numbers λi+1F (t,x)(P ) and the summ1
F (t,x)(P )+

λ1F (t,x)(P ) of F are independent of the parameter t in the family of

points P = (t, 0, . . . , 0) for all t in a neighborhood of the origin.

Theorem 4.1. 1. implies 2. implies 3. implies 4. implies 5. and 1. implies
6..

Proof. First we show that 1. implies 2.. For this we apply the Theorem
6.5 of Massey [9] where it is shown that the constancy of the Lê numbers
imply that the Thom condition AF is satisfied. Then we apply the result
of [3], Theorem 2.1., where it is shown that the Thom condition AF holds

if, and only if, the strict integral dependence condition ∂F
∂t ∈ Jz(F )

+
holds.

We have that 2. implies 3. and 3. implies 4. trivially.

To show that (4.) implies (5.) we see that (3.) implies the equality
Jz(F ) = J(F ), and as Jz(F ) ⊂ J(F ) the ideal Jz(F ) is a reduction of J(F ),
therefore we obtain V (Jz(F )) = V (J(F )). As we know that V (Jz(F )) =
∪Σ(ft), V (J(F )) = Σ(F ) and the sets Σ(ft) are disjoint for each t we obtain
the non-splitting condition Σ(ft) = Σ(F ) ∩ V (t).

To finish the proof we need to show that 1. implies 6., but we have
that 1. implies 5., hence for all i = 1, . . . , s we apply the proposition
1.21 of Massey [9], which relates the Lê numbers of hyperplane sections of
hypersurfaces with any singular set.

In this proposition Massey shows that λift(z)(0) = λi+1F (t,x)(t, 0), and from

1. we see that λift(z)(0) is constant for all t, hence λ
i+1
F (t,x)(t, 0) is constant

also.

To conclude thatm1
F (t,x)(t, 0)+λ

1
F (t,x)(t, 0) is also independent of t again

we apply the proposition 1.21 of Massey to get λ0ft(x)(0) = m1
F (t,x)(t, 0) +

λ1F (t,x)(t, 0) and since λ
0
ft(x)

(0) is constant, we obtain the constancy of the
sum. 2

Corollary 4.2. The following statements are equivalent: 1. ⇐⇒ 5. +
6. ⇐⇒ 4.+ 6. ⇐⇒ 3.+ 6. ⇐⇒ 2.+ 6..

Proof. We just need to show that 5. + 6. implies 1., but this we obtain
again from the proposition 1.21 of Massey. If we suppose that 5. holds,
then we get

λ0ft(x)(0) = m1
F (t,x)(t, 0) + λ1F (t,x)(t, 0) and λift(z)(0) = λi+1F (t,x)(t, 0)
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for all i = 1, . . . , s and all t, therefore we obtain the constancy of the Lê
numbers of ft from 6.. 2

Corollary 4.3. In the case of isolated singularity, the following statements
are equivalent: 1. ⇐⇒ 2 ⇐⇒ 3 ⇐⇒ 4. ⇐⇒ 5..

Proof. To prove this Corollary we just need to show that in this case the
condition 5 implies the condition 6. For this we follow the proof done by
Greuel. First we remember that µf0(0) =

P
µft(Q) for all Q ∈ Σ(ft), now

if we suppose that the non-spliting condition holds, then Γ1(F ) = ∅, hence
each ft has only the origin as an isolated singularity and µf0(0) = µft(0)
for all t (hence condition 1. is satisfied). Now as we are supposing that the
nonspliting condition holds we obtain from the proposition 1.21 of Massey
that µft(0) = λ0ft(0) = λ1F (t, 0) +m1

F (t, 0) and as Γ
1(F ) = ∅, m1

F (t, 0) = 0

and µft(0) = λ1F (t, 0) from which we conclude that λ1F (t, 0) is constant,
hence the condition 6 is also satisfied. 2

Remark 4.4. The condition 6. above is given in terms of the Lê numbers
of the deformation germ F and it should be interesting if we could give
another condition which does not depend on Lê numbers. In the sequel we
shall show how to translate this condition in terms of the blowing up of
Σ(F ) along the parameter space T = C×{0}, using some results of Lipman
[8].

First we give some notation: Call b : BlT (Σ(F )) → T the blow up of
Σ(F ) along T and denote by D its exceptional divisor, then for all i =
1, . . . , s, the Lê numbers λiF (t,x)(P ) of F are independent of the parameter

t in the family of points P = (t, 0, . . . , 0) for all t in a neighborhood of

the origin if, and only if, the restriction of b to the intersection D · b†ΛiF
is equidimensional over T , where b†ΛiF is the proper transform of the cicle
ΛiF in Σ(F ) by b.

Thus we can rephrase the conditon 6 in terms of the equidimensionality

of D · b†ΛiF over T and the constancy of the polar multiplicities m1
F (t,x)(P )

along T .

Remark 4.5. The constancy of the Lê numbers λi(ft) is also characterized
by Gaffney and Gassler in [2, Proposition 4.6], in terms of the equidimen-
sionality over the parameter space T of the components of suitable divisors
on the blow-up of the hypersurface X = F−1(0) along the product of the
ideal of T with the ideal of Σ(F ).
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In fact the results of Gaffney and Gassler are done for the Segre numbers
of any ideal, and when we consider the Jacobian ideal of any germ f , the
Lê numbers and the Segre numbers coincide.

Remark 4.6. While in the case of isolated singularities the constancy of
the Milnor numbers are sufficient to guarantee the topological triviality
of the family in the non-isolated singularity case, this is not true, as ob-
served by Massey in [9] and shown by Bobadilla in [1]. However Massey
shows in the Theorem 9.4 of [9] a generalization of part of the result of
Lê-Ramanujam, essentially he proves that the constancy of the Lê numbers
in a family implies the constancy of the Milnor fibrations in the family.

The importance of the constancy of the Lê numbers to express the
topological triviality or equisingularity of germs of hypersufaces is shown
in the results of Massey [9], Gaffney-Gassler [2], Gaffney-Massey [3] and
Bobadilla [1]. The results given in [1] are given for function germs with
one dimensional critical set and the main interest of Bobadilla is to obtain
geometrical conditions to ensure when the constancy of the Lê numbers
implies the topological triviality of families of such functions.
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France, pp. 285—362, (1973).

Roberto Callejas-Bedregal
Departamento de Matemática,
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