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Abstract
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1. Introduction

In this study, we are concerned with the problem of approximating a locally
unique solution xB of equation

F(x) = 0,(1.1)

where, F is Fréchet-differentiable operator defined on a convex subset D of
a Banach space X with values in a Banach space Y.

Many problems in computational mathematics can brought in the form
(1.1). The solutions of these equations are rarely found in closed form.
Therefore most solution methods for these equations are iterative. New-
ton’s method

xn+1 = xn −F 0(xn)−1F(xn) (n ≥ 0), (x0 ∈ D)(1.2)

is undoubtedly the most popular method for generating a sequence {xn}
converging quadratically to xB. Two-step Newton method (TSNM)

yn = xn − F 0(xn)−1F(xn) (n ≥ 0), (x0 ∈ D),
xn+1 = yn − F 0(xn)−1F(yn)

(1.3)

has also been used to generate a cubically convergent sequence xB five,nine.
Note that (1.3) requires one more evaluation of F per step than Newton’s
method (1.2)

In particular Ezquerro, Hernández and Salanova nine used the following
conditions (in non-affine invariant form) (CK)

F0(x0)−1 ∈ L(Y,X ) for some x0 ∈ D;°°°F 0(x0)−1F(x0)°°° ≤ ν°°°F 0(x0)−1hF 0(x)− F 0(x0)i°°° ≤ L0 kx− x0k forallx ∈ D;°°°F 0(x0)−1hF 0(x)− F 0(y)i°°° ≤ L kx− yk forallx, y ∈ D;

hk = Lη ≤ 1
2
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(1.4)

and

U(x0, λ) =
n
x ∈ ∇edD

¯̄̄
kx− x0k ≤ λ

o
⊆ D,

for specified λ ≥ 0.
The same (Ck) conditions have been used to show the semilocal con-

vergence for the Newton’s method (1.2). Note that (1.4) is the, famous for
its simplicity and clarity, Kantorovich sufficient convergence hypothesis for
the Newton’s method (1.2). A current survey on Newton-type methods can
be found in [][and the references therein]five (see also thirteen,fifteen). We
have shown five the quadratic convergence of the Newton’s method (1.2).
Using the set of conditions (CAH)

F0(x0)−1 ∈ L(Y,X ) forsome x0 ∈ D;°°°F 0(x0)−1F(x0)°°° ≤ redη°°°F 0(x0)−1hF 0(x)− F 0(x0)i°°° ≤ L0 kx− x0k forall x ∈ D;°°°F 0(x0)−1hF 0(x)− F 0(y)i°°° ≤ L kx− yk forall x, y ∈ D;

hAH = Lη ≤ 1
2

(1.5)

and

U(x0, λ0) ⊆ D,

for some specified λ0 ≥ 0, where

L =
1

8

³
L+ 4L0 +

p
L2 + 8L0L

´
.(1.6)

Note that

L0 ≤ L(1.7)

holds in general, and L/L0 can be arbitrarily large four,five. Moreover,
redL0 the Center-Lipschitz is not an additional condition, since L0 is a
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special case of redL. Furthermore, we have by (1.4)-eq:17

hK ≤
1

2
=⇒ hAH ≤

1

2
(1.8)

but not necessarily vise versa unless if L0 = redL. The error analysis
under eq:15 is also tighter than eq:14. Hence, the applicability of Newton’s
method (1.2) has been extended.

In this study, we provide the sufficient convergence conditions for (TSNM)
corresponding to (1.4). The paper is organized as follows: §2 contains the
semilocal convergence analysis for (TSNM), whereas the numerical exam-
ples are given in §3.

2. Semilocal Convergence Analysis for (TSNM)

We need the following result on majorizing sequence for (TSNM).

Lemma 2.1. Let L0, L, η be positive constants. Assume: there exist
parameters α and φ such that

Lη

2
≤ α ≤ L

2L2
,(2.1)

L1η

2(1− L2η)
≤ φ ≤ φ0(2.2)

and

η ≤ min
½

2

L1 + 2L2(1 + φ)
,
1

L2

¾
(2.3)

where,

L1 = α(2 + α)L, L2 = (1 + α)L0,(2.4)

φ0 = min

⎧⎨⎩ 2L1

L1 +
q
L21 + 8L1L2

,
L− 2αL2

L
,
2α(1− L2η)

Lη

⎫⎬⎭ .(2.5)

Then, sequences {sn}, {tn} generated by

t0 = 0, s0 = η, tn+1 = sn +
L(sn − tn)

2

2(1− L0tn)
,

sn+1 = tn+1 +
L [2(sn − tn) + tn+1 − redsn] (tn+1 − redsn)

2(1− L0tn+1)

(2.6)
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are non-decreasing, bounded from above by

tBB =

µ
1 + α

1− φ

¶
η,(2.7)

and converge to their common least upper bound tB ∈ [0, tBB]. Moreover,
the following estimates hold

0 ≤ tn+1 − sn ≤ α(sn − tn),(2.8)

and

0 ≤ sn+1 − tn+1 ≤ φ(sn − tn).(2.9)

Proof. We shall show using induction on k:

0 ≤ L(sk − tk)

2(1− L0tk)
≤ α,(2.10)

and

0 ≤ L1(sk − tk)

2(1− L0tk+1)
≤ φ.(2.11)

Note that estimates (2.8) and (2.9) will then follow from (2.10) and
(2.11), respectively. Estimates (2.10) and (2.11) hold by the left hand side
hypotheses in (2.1),(2.2), respectively. It follows from (2.6), (2.10) and
(2.11) that estimates (2.8) and (2.9) hold for redn = 0. Let us assume
estimates (2.10) and (2.11) hold for all k ≤ redn. It then follows that
estimates (2.8) and (2.9) hold for n = redk. We then have:

0 ≤ sk − tk ≤ φ(sk−1 − tk−1) ≤ φ · φ(sk−2 − tk−2) ≤ · · · ≤ φkη,(2.12)

0 ≤ tk+1 − sk ≤ α(sk − tk) ≤ αφkη,(2.13)

and

tk+1 ≤ sk + αφkη ≤ tk + αφkη + φkη

≤ sk−1 + αφk−1η + αφkη + φkη
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≤ tk−1 + φk−1η + αφk−1η + αφkη + φkη

= tk−1 + (φk−1 + φk)η + α(φk−1 + φk)η ≤ · · ·

≤ s0 + α(η + φη + · · ·+ φkη) + α(φη + · · ·+ φkη)

= (1+α)(1 + φ+ · · ·+ φkη) ≤ tBB.
(2.14)

In view of (2.12) and (2.14), estimate (2.10) certainly holds, if

0 ≤ Lφkη

2 [1− L2(1 + φ+ · · ·+ φk−1)η]
≤ α,(2.15)

or

Lφkη + 2αL2(1 + φ+ · · ·+ φk−1)η − 2α ≤ 0.(2.16)

Estimate (2.16) motivates us to introduce recurrent functions fk on
[0, 1) by

fk(t) = Lηtk + 2αL2(1 + t+ · · ·+ tk−1)η − 2α.(2.17)

We need a relationship between two consecutive functions fk:

fk+1(t) = Ltk+1η + 2αL2(1 + t+ · · ·+ tk)η − 2α− Ltkη−

2αL2(1 + t+ · · ·+ tk−1)η + 2α+ fk(t)

= fk(t) + Ltk+1η − Ltkη + 2αL2t
kη

= fk(t) + g(t)tkη,
(2.18)

where

g(t) = Lt− L+ 2αL2.(2.19)
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Note that g(φ) ≤ 0 by (2.2). Using (2.17) we see that (2.16) holds

redif fk(φ) ≤ 0
redor redf1(φ) ≤ 0,

(2.20)

since, g(φ) ≤ 0 and fk+1(φ) = fk(φ) + g(φ)φkη ≤ fk(φ),(2.21)

where φ is chosen as in the right hand side inequality of (2.1). But (2.20)
also holds by (2.2). Moreover, define function f∞ on [0, 1) by

f∞(t) = lim
k→∞

f(t).(2.22)

Then, we have by (2.19) that

f∞(φ) ≤ 0.(2.23)

Hence, (2.8) and (2.10) hold for all k. Similarly, (2.11) holds, if

L1φ
kη ≤ 2φ

h
1− L2(1 + φ+ · · ·+ φk)η

i
(2.24)

or

L1φ
kη + 2φL2(1 + φ+ · · ·+ φk)η − 2φ ≤ 0.(2.25)

As in (2.17) we define functions pk on [0, 1) by

pk(t) = L1t
kη + 2tL2(1 + t+ · · ·+ tk)η − 2φ.(2.26)

We need a relationship between two consecutive functions redhk:

pk+1(t) = [t]L1t
k+1η + 2tL2(1 + t+ · · ·+ tk+1)η − 2φ− L1t

kη

-2tL2(1 + t+ · · ·+ tk)η + 2φ+ pk(t)
= pk(t) + L1t

k+1η − L1t
kη + 2L2t

k+2η

= pk(t) + g1(t)t
kη

(2.27)

where

g1(t) = 2L2t
2 + L1t− L1.(2.28)
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Note that g1(φ) ≤ 0 by (2.2) and that

redr = red
2L1

L1 +
q
L21 + 8L1L2

(2.29)

redis the positive root of g1. In view of (2.26), estimate (2.25) holds

if pk(φ) ≤ 0 or p1(φ) ≤ 0(2.30)

since, g1(φ) ≤ 0 and pk+1(φ) = pk(φ) + g1(φ)φ
kη ≤ pk,

where φ is chosen as in the right hand side of (2.2). Note now that (2.30)
holds by (2.3). Furthermore, define functions p∞ on [0, 1) by

p∞(t) = lim
k→∞

pk(t).(2.31)

We then have

p∞(φ) ≤ 0.(2.32)

That completes the induction for (2.9) and (2.11). Finally, in view of
(2.8), (2.9) and (2.14), sequences {tn}, {sn} converge to tB. That completes
the proof of the Lemma. 2

We need an Ostrowski-type relationship between iterates {xn} and {yn}
fourteen.

Lemma 2.2. Let us assume iterates {xn} and {yn} in (TSNM) are well
defined for all n ≥ 0. Then, the following identities hold:

F(xn+1) =
Z 1

0

h
F 0(yn + θ(xn+1 − yn))− F 0(xn)

i
(xn+1 − yn)dθ,

(2.33)

and

F(yn) =
Z 1

0

h
F 0(xn + θ(yn − xn))− F 0(xn)

i
(yn − xn)dθ.(2.34)
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Proof. Identity (2.34) follows from the Taylor’s theorem and the first
iteration in (TSNM), whereas (2.35) follows from Taylor’s theorem and the
second iteration in (TSNM). That completes the proof of the Lemma. 2

We can show the following semilocal convergence result for (TSNM).

Lemma 2.3. Let F : D ⊂ X → Y be Fréchet-differentiable operator.
Assume: there exist x0 ∈ D, L0 > 0, L > 0 and η > 0 such that for all
x, y ∈ D:

F 0(x0)−1 ∈ L(Y,X ),(2.35)

°°°F 0 (x0)−1F(x0)°°° ≤ η,(2.36)

°°°F 0 (x0)−1 ¡F 0(x)−F 0(x0)¢°°° ≤ L0 kx− x0k ,(2.37)

°°°F 0 (x0)−1 ¡F 0(x)− F 0(y)¢°°° ≤ L kx− yk ,(2.38)

U(x0, t
B) ⊆ D.(2.39)

Hypotheses of Lemma 2.1 hold, where tB is given in Lemma 2.1. Then,
sequences {xn} and {yn} generated by (TSNM) are well defined, remain in
U(x0, t

B) for all n ≥ 0 and converge to a solution xB ∈ U(x0, t
B) of equation

F(x) = 0.
Moreover, the following estimates hold

kyn − xnk ≤ sn − tn,(2.40)

kxn+1 − ynk ≤ tn+1 − sn,(2.41)

kxn+1 − xnk ≤ tn+1 − tn,(2.42)

kyn+1 − ynk ≤ sn+1 − sn,(2.43)

kxn − xBk ≤ tB − tn,(2.44)

kyn − xBk ≤ tB − sn.(2.45)
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Furthermore, if there exists R ≥ tB such that

U(x0, R) ⊆ D(2.46)

and

L0(t
B +R) < 2,(2.47)

then, xB is the only solution of F(x) = 0 in U(x0, R).

Proof. We shall show using induction on k that (TSNM) is well defined,
the iterates remain in U(x0, t

B) for all n ≥ 0 and estimates (2.41) and (2.42)
hold for all n ≥ 0. Iterate y0 is well defined by the first equation in (TSNM)
for n = 0 and (2.36). We also have by (2.6) and (2.37)

ky0 − x0k =
°°°F 0(x0)−1F(x0)°°° ≤ η = reds0 = s0 − t0 ≤ tB.

That is (2.41) holds for n = 0 and y0 ∈ U(x0, t
B). Using (TSNM) for

n = 0, we see that x1 is well defined. Moreover, in view of (2.35) for n = 0,
(TSNM), (2.6) and (2.37)-(2.39), we get

kx1 − y0k =
°°°°Z 1

0
F 0(x0)−1

£
F 0(x0 + θ(y0 − x0))− F 0(x0)

¤
dθ(y0 − x0)

°°°°
≤ L0

R 1
0 θky0 − x0k2dθ =

L0
2
ky0 − x0k2

≤ L0
2
(s0 − t0)

2 = t1 − s0

which shows (2.42) for n = 0. We also have

kx1 − x0k ≤ kx1 − y0k+ ky0 − x0k ≤ t1 − s0 + s0 − t0 = t1 − t0 ≤ tB,

which implies (2.43) holds for n = 0 and x1 ∈ U(x0, t
B).

Let w ∈ U(x0, t
B). Then, we have by Lemma 2.1 and (2.38) that°°°F 0 (x0)−1 hF 0(w)− F 0(x0)i°°° ≤ L0 kw − x0k ≤ L0t

B < 1.(2.48)

It follows from (2.49) and the Banach lemma on invertible operators
five,thirteen,fifteen that F 0 (w)−1 exists and°°°F 0 (w)−1F 0(x0)°°° ≤ 1

1− L0kw − x0k
.(2.49)
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In particular, for x1 ∈ U(x0, t
B), we have

°°°F 0 (x1)−1F 0(x0)°°° ≤ 1

1− L0kx1 − x0k
≤ 1

1− L0(t1 − t0)
=

1

1− L0t1
.

(2.50)

Using (TSNM), (2.6), (2.34) (for n = 0) and (2.51), we get

ky1 − x1k =
°°°hF 0(x1)−1F 0(x0)i hF 0(x0)−1F(x1)i°°°

≤
°°F 0(x1)−1F 0(x0)°° °°F 0(x0)−1F(x1)°°

≤ 1

1− L0t1

°°°R 10 F 0(x0)−1 [F 0(y0 + θ(x1 − y0))− F 0(x0)] dθ(x1 − y0)
°°°

≤ L0
1− L0t1

R 1
0 [ky0 − x0k+ θkx1 − y0k] dθkx1 − y0k

≤ redL

1− L0t1

∙
(s0 − t0) +

1

2
(t1 − s0)

¸
(t1 − s0) = s1 − t1,

which implies (2.41) for n = 1. We then have that

ky1 − y0k ≤ ky1 − x1k+ kx1 − y0k ≤ s1 − t1 + t1 − s0 = s1 − s0,

ky1 − x0k ≤ ky1 − y0k+ ky0 − x0k ≤ s1 − s0 + s0 − t0 = s1 ≤ tB,

which imply (2.44) for n = 0 and y1 ∈ U(x0, t
B). Let us now assume (2.41)-

(2.44), yn, xk ∈ U(x0, t
B) for all n ≤ k. Using (TSNM), (2.6), (2.34), (2.35),

(2.39) and the induction hypotheses, we have in turn that

kxk+1 − x0k ≤ kxk+1 − xkk+ kxk − xk−1k+ · · ·+ kx1 − x0k

≤ tk+1 − tk + tk − tk−1 + · · ·+ t1 − t0 = tk+1 ≤ tB,
(2.51)
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kyk+1 − xk+1k =
°°°hF 0(xk+1)−1F 0(x0)i hF 0(x0)−1F(xk+1)i°°°

≤
°°F 0(xk+1)−1F 0(x0)°° °°F 0(x0)−1F(xk+1)°°

≤ 1

1− L0kxk+1 − x0k
R 1
0

°°°F 0(x0)−1 [F 0(yk + θ(xk+1 − yk))

- F0(xk)dθ(xk+1 − yk)
°°°

≤ L

1− L0tk+1

R 1
0

h
kyk − xkk+ θkxk+1 − ykk

i
dθ
°°°xk+1 − yk

°°°
≤ L

1− L0tk+1

h
sk − tk +

1

2
(tk+1 − sk)

i
(tk+1 − sk)

= sk+1 − tk+1,
(2.52)

kxk+2 − yk+1k =
°°°hF 0(xk+1)−1F 0(x0)i £F 0(x0)−1F(yk+1)¤°°°

≤ 1

1− L0tk+1

R 1
0

°°°F 0(x0)−1 [F 0(xk+1 + θ(yk+1 − xk+1))

- F0(xk+1)dθ(yk+1 − xk+1)
°°°

≤ L

1− L0tk+1

R 1
0 θkyk+1 − xk+1k2dθ

≤ L

2(1− L0tk+1)
(sk+1 − tk+1)

2 = tk+2 − sk+1,

(2.53)

kyk+2 − yk+1k ≤ kyk+2 − xk+2k+ kxk+2 − yk+1k

≤ sk+2 − tk+2 + tk+2 − sk+1 = sk+2 − sk+1,

(2.54)
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kxk+2 − xk+1k ≤ kxk+2 − yk+1k+ kyk+1 − xk+1k
≤ tk+2 − sk+1 + sk+1 − tk+1 = redtk+2 − tk+1

(2.55)

which show (2.41)-(2.44) hold for all n ≥ 0. Estimates (2.45) and (2.46)
follow from (2.43) and (2.44), respectively by using standard majorization
technique five,thirteen,fifteen. Moreover, from Lemma 2.1 and (2.41)-(2.44)
we deduce that (TSNM) is Cauchy in a Banach space X and as such it
converges to some xB ∈ U(x0, t

B) (since U(x0, t
B) is a closed set).

Moreover, we have by (2.53)

°°°F 0(x0)−1F 0(xk+1)°°° ≤ L

∙
kyk − xkk+

1

2
kxk+1 − ykk

¸
kxk+1 − ykk

→ 0, as k →∞.
(2.56)

That is F(xB) = 0. Finally to show uniqueness, let yB ∈ U(x0, R) be a
solution of equation F(x) = 0. Let us define linear operator M by

M =

Z 1

0
F 0(yB + θ(xB − yB))θ.(2.57)

Then, using (2.38), (2.47) and (2.48), we get in turn that

°°F 0(x0) £M − F 0(x0)¤°° ≤ L0

Z 1

0
kyB + θ(xB − yB)− x0k θ

≤ L0
R 1
0 [(1− θ)kyB − x0k+ θkxB − x0k] θ

≤ L0
2
(R+ tB) < 1.

(2.58)
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It follows from (2.59) and the Banach Lemma on invertible operators
that M−1 exists. Then, in view of the identity

0 = F(xB)− F(yB) =M(xB − yB),(2.59)

we conclude that xB = yB. That completes the proof of the Theorem. 2

Remarks 2.4.

Limit point tB can be replaced by tBB, given in closed form by (2.7), in
hypotheses (2.40) and (2.48).

The verification of conditions (2.1)-(2.3) require simple algebra (see also
Example 3.1).

If L0 = L, then scalar sequences {sn}, {tn} given by (2.6) reduce essentially
to the ones used in nine. In particular, we have in this case

redt0 = 0, reds0 = η, tn+1 = sn +
L(sn − tn)

2

2(1− Ltn)
,

sn+1 = tn+1 +
L[2(sn − tn) + tn+1 − sn](tn+1 − sn)

2(1− Ltn+1)

(2.60)

If L0 < L iteration (2.6) is tighter than eq:261. Moreover, in view of
the proof of the Theorem 2.3, we note that sequence

t0 = 0, s0 = η, tn+1 = sn +
LB(sn − tn)

2

2(1− L0tn)
,

sn+1 = tn+1 +
LB[2(sn − tn) + tn+1 − sn](tn+1 − sn)

2(1− L0tn+1)
,

(2.61)

is also majorizing for (TSNM), where

LB =

(
L0, if n = 0
L, if n > 0.

In case L0 < L, (2.26) is even a tighter majorizing sequence than (2.61).
Furthermore, L,L1 can be replaced by L0, L

B
1 = α(α+ 2)L0 red at the left

hand sides of (2.1) and (2.2), respectively.

If α = 0, reddefine L1 = L, then it is simple algebra to show that conditions
of Lemma 2.1 reduce to (1.5). Moreover, if L0 = L, these conditions reduce
to (1.4). That is we have Newton’s method (1.2), and iteration (2.6) reduces
to
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t0 = 0, t1 = η, tn+2 = tn+1 +
L(tn+1 − tn)

2

2(1− L0tn+1)
.(2.62)

In the case of Newton’s method for L0 = L, we have the well-known
Kantorovich majorizing sequence four,five,thirteen,fifteen

ν0 = 0, ν1 = η, νn+2 = νn+1 +
L(νn+1 − νn)

2

2(1− Lνn+1)
.(2.63)

Note that if L0 < L, {tn} is a tighter majorizing sequence than {νn}
for the Newton’s method five,thirteen,fifteen.

3. Numerical Examples

Let X = Y = R2 be equipped with the max-norm, x0 = (1, 1)T , D =
U(x0, 1− p), p ∈ [0, 1/2) and define F on D by

F(x) =
³
ξ31 − p, ξ32 − p

´T
, x = (ξ1, ξ2)

T .(3.1)

Using (2.35)-(2.37), we get

η =
1− p

2
, L0 = 3− p and L = 2(2− p) > L0.(3.2)

The Newton-Kantorovich hypothesis (1.4) is violated, since

4

3
(1− p)(2− p) > 1 forall p ∈ [0, 1/2).

Hence, there is no guarantee that (TSNM) converges to xB =
¡
3
√
p, 3
√
p
¢
.

That is the results in rednine,thirteen,fifteen cannot apply to solve equation
(3.1).

Using (2.1)-(2.5) and (TSNM) for p = 0.49, we get

η = 0.17, L0 = 2.51, L = 3.02, L1 = 1.774552, L2 = 3.1626.

So, (2.1)-(2.3) become

0.2567 < 0.26 < 0.477455258,

0.326234049 < 0.33 < 0.407656274,
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η ≤ 0.196327344.

Moreover, we have

tBB = 0.319701493 < 1− p = 1− 0.49 = 0.51,

tBB ≤ R <
2

L0
− tBB = 0.47711256 < 1− p = 0.51.

Hence, the conclusions of Theorem 2.2 apply and (TSNM) converges to

xB =
³
3
√
0.49,

3
√
0.49

´T
= (0.788373516, 0.788373516)T .
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