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Abstract

We prove an extension of a classical result for null controllability
of linear control systems on Euclidean spaces, to linear control sys-
tems on a connected Lie group G, assumed to be simply connected and
nilpotent.
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1. Introduction

Controllability property of control systems is one of the most important
problems in control theory and there is no general criterion yet to de-
termine it even for a class of invariant systems on Lie groups. However,
some partial results are obtained on specific state spaces. For example, Y.
Sachkov has studied in ([11],[12]) controllability of invariant control systems
on solvable Lie groups, V. Jurdjevic and H. Sussmann, [7], on compact Lie
groups, V. Jurdjevic and I. Kupka, [8], on semi-simple Lie groups and their
homogeneous spaces, L. San Martin and P. Crouch, [13], on principal fibre
bundles with compact structure group, etc.

In particular, linear control systems on Rn are well-known since such
class of control systems are important from both practical and theoretical
point of views. In fact, there are many applications coming from some
mechanical or physical problems where the state space is not the vector
space Rn but a Lie group for instance.

A generalization of linear systems on Euclidean spaces to Lie groups
has introduced by Ayala and Tirao in [1]. More precisely, let G denote a
connected Lie group with Lie algebra g considered as the set of left invariant
vector fields. A linear control system on G is defined as a pair

Σ = (G,D)

where the dynamic D is given by the family of differential equations

·
x= X(x) +

mX
j=1

ujY
j(x), x ∈ G

.

The system Σ has its drift vector fieldX as an element of the normalizer
n = {Z ∈ Vect∞(G) : [Z, g] ⊂ g} of g in the set Vect∞(G) of smooth vector
fields on G, and the control vectors Y j , j = 1, 2, . . . ,m, all belong to the
Lie algebra g.

The class of control systems with normalizer generalizes linear control
systems on Rn, invariant control systems on Lie groups, etc. The purpose
of this paper is to generalize to linear control systems on the class of simply
connected and nilpotent Lie groups the classical null controllability result
of linear systems on Euclidean spaces.
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2. Linear Control Systems on Lie groups

Let G be a connected Lie group of dimension n with Lie algebra g. In [1]
the authors introduced on G a generalization of the classical linear control
systems on Rn as follows: By definition a linear control system or simply
linear system is determined by the pair Σ = (G,D) where G is the state
space and the dynamic D is given by the family of differential equations

·
x = X(x) +

mX
j=1

ujY
j(x), x ∈ G.

The drift vector field X is an element of the normalizer

n = {Z ∈ Vect∞(G) : [Z, g] ⊂ g}

of g and the control vectors Y j , j = 1, 2, . . . ,m, belong to g. Here g is
considered as the set of left invariant vector fields and [ , ] is the usual Lie
bracket. The input functions u = (u1, u2, . . . , um) belong to the class U of
unrestricted admissible control functions. The elements of U are piecewise
constant functions of the form u : [0, T (u)] → Rm where T (u) > 0 means
the terminal time of u. The set U of admissible controls is closed under
concatenation, that is, if u and v belong to U , then the function w = u ∗ v
defined by

w(t) =

(
u(t), t ∈ [0, T ),

v(t− T ), t ∈ [T,∞)
belongs as well to U .

If u ∈ U the associated dynamic of Σ is given by the pair (Y u,X) where
Y u =

Pm
j=1 ujY

j ∈ g. In [1] the authors prove that the normalizer n of g
is isomorphic to the semidirect product g ⊗s aut(G) where aut(G) is the
Lie algebra of Aut(G), the Lie group of G-automorphisms. Moreover, they
have proved for a pair (E,φ) in the normalizer g ⊗s aut(G) the following
Theorem which gives an explicit formula for trajectories of Σ.

Theorem 2.1. The integral curves of the associated differential equation
determined by (E,φ) are given by x(t) = Xt(x) exp ζ(t), x ∈ G, where
ζ(t) is a differentiable curve through 0 at the Lie algebra level g defined
by ζ(t) = Σn ≥1(−1)n+1tndn(E,φ). For each n ≥ 1, dn is a homogeneous
polynomial map of degree n from g× ∂g into g.

Additionally, if G is also simply connected they show that

n ∼= g ⊗s Der(g)
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where Der(g) stands for the Lie algebra of all derivations of g, that is, the
set of linear transformations D : g → g satisfying D ([X,Y ]) = [D(X), Y ]+
[X,D(Y )], for all X,Y ∈ g. It follows that when we consider a nilpotent
and simply connected Lie group G as state space on which linear system
Σ evolves it becomes relatively easier to determine explicitly its solutions.
See Proposition 2.3 below.
Remark. In [10] it is given a list of nilpotent Lie groups G of low dimension
whose underlying set is Rn. The origin is the identity element of G and the
multiplication and inverse functions are polynomial maps. So, G is none
other than Rn but with a non Abelian algebraic group structure. It follows
that for such Lie groups we have a plenty of examples of linear systems
which admit computationally tractable solutions.

Also, note that if X = Y + 0 ∈ g then a linear system Σ is nothing
else than an invariant system on G. However, there exists a remarkable
difference between the well known class of invariant control systems on G
and the linear one. Essentially, the difference depends on the drift vector
field. In the first case the drift is invariant while in our case it is induced by
a derivation. See Definition 2.2. Actually, in the well known paper by V.
Jurdjevic and H. J. Sussmann in [7], the authors proved that the positive
orbit of the identity element e of G is a semigroup. Hence, for a connected
Lie group controllability on G is equivalent to the local controllability from
e. But, in [5], the authors show an example of a linear control system on
SL(2) where the positive orbit of e is not a semigroup.

On the other hand, if Σ satisfies the ad-rank condition then it is locally
controllable at e. For further details see the paper [1]. Of course, Σ is a
natural generalization of the class of linear control systems from Euclidean
spaces to any arbitrary Lie group. For a complete review of 40 years of
research on invariant control systems we refer to [11]. See also [12].

Definition 2.2. A vector field X on a Lie group G is said to be an in-
finitesimal automorphism if the flow (Xt)t∈R induced byX is a 1-parameter
subgroup of Aut(G).

Proposition 2.3. Let G be a connected and simply connected nilpotent
Lie group with Lie algebra g. Any D ∈ Der(g) induces an infinitesimal
automorphism X = XD as an element in the normalizer n of g. In this
particular situation we can compute X explicitly.

Proof. Consider the 1-parameter group of automorphisms

Wt = etD ∈ Aut(g), t ∈ R.
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By the hypothesis on G, the exponential map expG : g → G is a global
isomorphism from the Abelian group g onto G. For each t ∈ R,

Xt = expG(Wt) ∈ Aut(G).

It turns out that
Xt(expG Y ) = expG((Xt)∗(Y ))

where (Xt)∗ stands for the differential of Xt given, [14], by

(Xt)∗ =
∞X
k≥0

tk

k!
Dk.

By taking derivatives, the flow (Xt)t∈R determines the vector field X in n
defined by

X(g) =

µ
d

dt

¶
t=0

Xt(g), g ∈ G.

If expY = x ∈ G then through the inverse map of expG we obtain

Xt(x) = expG(e
tD logG x)

and hence

X(x) =

µ
d

dt

¶
t=0
exp(etD logG x).

Remark. For the purposes of the paper, the drift vector field X of Σ will
be always induced by an element D of Der(g).

A particular class of such dynamics comes from inner automorphisms
on G. More precisely, consider an element W ∈ g. Since W is complete its
flow

Wt(z) = expG(tW )z, z ∈ G

defines by conjugation a 1-parameter group of inner automorphisms on G
as follows:

Xt(x) =Wt(e)xW−t(e), x ∈ G.

ThereforeXt ∈ Aut(G) for any t ∈ R. In this case, the associated derivation
D : g → g is defined by D(Y ) = ad(X) = [X,Y ] for any Y in g. However,

this subclass of drift vector fields is far from determining Der(g) since
there could exist a big difference of cardinality of derivations and inner
derivations.
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3. Null controllability

In this section we prove a null controllability result for linear systems on
nilpotent and simply connected Lie groups.

Let G denote a connected Lie group with the identity element e, and
let Σ be a linear system on G. We denote by x(g, u, t) the integral curve
associated to the control u with initial condition g ∈ G. First we remember
some definitions.

Definition 3.1. A linear system Σ on G is said to be

1. Controllable if for any g, h ∈ G there exists an admissible control
u ∈ U and a time t ≥ 0 such that x(g, u, t) = h.

2. Locally controllable at e ∈ G if the reachable set

A(e, t) = {x(e, u, t) : u ∈ U}

of Σ in time t is a neighborhood of e.

3. Σ is said to be null controllable if for each g ∈ G there exist a control
u ∈ U and t > 0 such that x(g, u, t) = e ∈ G.

We denote by

=(t) = {g ∈ G : ∃ u ∈ U , x(g, u, t) = e }

the set of controllable points to e at time t and by

= =
[
t>0

=(t)

the null controllable set of Σ. We use the shape of the Σ-solutions to give
some topological properties of the set = as follows:

Proposition 3.2. Let Σ be a linear system on G. Then, (i) = is path-
connected and (ii) = is an open set if and only if e ∈ int(=).

Proof. To prove the path- connectedness of = we have to show that given
p and q in = there exists a curve γ : [0, 1] → = such that =(0) = p and
=(1) = q. That p ∈ = implies that p ∈ =(t) for some t > 0 so that there
exists a control u ∈ U whose terminal time T (u) is t satisfying x(0) = p
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and x(p, u, t) = e. Therefore, to any p0 ∈ G on the integral curve x(t) there
corresponds a control u0 defined by

u0(s) =

(
u(t0 + s) if 0 ≤ s ≤ t− t0

0 if t− t0 ≤ s ≤ t

where T (u0) = t − t0 and x(t0) = p0. Since the drift vector field X is an
infinitesimal automorphism of G it satisfies Xt(e) = e for each t ∈ R so
that p0 ∈ =. Let us denote by U(p) the set

{x(p, u, s) : 0 ≤ s ≤ t} ⊂ =(t).

It follows that the curve γ given by U(p) ∪ U(q) ⊂ = joins p to q.
To show the second assertion assume that = is an open subset of G.

Since e ∈ = it follows that e is in the interior int(=). Suppose conversely
that e ∈ int(=). Then, there exists an open set Oe of e contained in =. Let
g ∈ = be arbitrary and given u ∈ U . Since the corresponding solution of Σ
depends continuously on the initial state it follows by standard continuity
arguments that for the curve connecting the initial state g to e there exists
an open set Og of g in =. This completes the proof.

Definition 3.3. Let Σ = (G,D) be a linear system

1. Σ is said to be transitive if for any g, h ∈ G there exist an admissible
control u ∈ U and a time t ∈ R such that x(g, u, t) = h.

2. We say Σ satisfies the ad-rank condition if dim(V ) = dim(G) where
V denotes the vector space

Span
n
adi(X)(Y j) : i ≥ 0, 1 ≤ j ≤ m

o
.

Let Σ be a transitive linear system on a connected Lie group G such
that the drift X is an infinitesimal automorphism. According to Theorem
3.5 in [1], if Σ satisfies the ad-rank condition then it is locally controllable at
e. Since ad(X)(Y ) = D(Y ) one can determine explicitly ad-rank sequence
just by matrix multiplication with consecutive iterations.

Given a matrix A ∈ gl(n,R) the spectrum of A is given by Spec(A) =
{λ : λ is an eigenvalue of A}. We present the null controllability result as
follows:
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Theorem 3.4. Assume that G is connected and simply connected nilpo-
tent Lie group. Let Σ be a linear system on G such that the drift X is
provided by a non-inner derivation D. If Σ satisfies ad-rank condition
and Spec(D) ⊂ C− then = = G, that is, Σ is null controllable.

Proof. Consider the reverse system Σ−, which is obtained by replacing
X by −X. Since, we are assuming that the original system satisfies the
ad-rank condition the same is true also for Σ−. In particular, Theorem
3.5 in [1] implies that Σ− is locally controllable at e. So, there exists a
neighborhood U of e such that e can be reached by any state in U through
an integral curve of Σ. On the other hand, since G is assumed to be simply
connected and any eigenvalues of D has negative real part we obtain at the
Lie algebra level

etD · logG x −→ 0 ∈ g as t −→∞

and hence
Xt(x) −→ e ∈ G

on the corresponding group. In particular, for each x ∈ G there exists a Tx
such that XTx(x) ∈ U . The proof is now complete.

Remark. The assumption that X is associated to a non-inner deriva-
tion cannot be dropped, otherwise Theorem above fails to be true. This
is because all the adjoint operators ad(Z), Z ∈ g, of nilpotent Lie alge-
bras have zero spectrum! We recall that a controllability (and hence, null
controllability) result for linear systems on nilpotent Lie groups is recently
obtained by P. Jouan in (Theorem 4, [9]) where the drift X is inner. Hence,
although our theorem states a weaker result (null controllability does not
imply controllability!) it gives an affirmative answer to the case when the
infinitesimal automorphism X is not inner.

On the other hand, according to the Theorem above it would be very
useful to have outer derivations of a given Lie algebra g to determine sys-
tems on the corresponding Lie group G which are null controllable. Of
course, effective computation of derivations is not an easy task. That is
why computer programs for calculation of Lie algebra characteristics such
as automorphisms, ideals, derivations, etc are in use for a long time. How-
ever, such computer programs have reasonably limited applications since
some of them do not compute with Lie algebras having pure real or com-
plex non-rational structure constants while others have not been conceived
to consider parameters. See the paper by Ayala-Kizil-Tribuzy in [6] where
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the structure tensor is considered to obtain conditions that a linear trans-
formation g → g must satisfy in order to be a derivation of g.

Example. Let G = R3 the connected and simply connected Heisenberg
Lie group of dimension 3. In this case, the non-Abelian group operation ∗
is defined by

(x1, x2, x3) ∗ (y1, y2, y3) =: (x1 + y1 + x3y2, x2 + y2, x3 + y3).

The Lie algebra g of G is generated by the vector fields

Y 1 =
∂

∂x1
Y 2 = x3

∂

∂x1
+

∂

∂x2
Y 3 =

∂

∂x3

and the only non-vanishing Lie bracket is [Y 3, Y 2] = Y 1. The exponential
map is defined by

exp(a1Y
1 + a2Y

2 + a3Y
3) = (a1 +

1

2
a2a3, a2, a3)

while the logarithm map is given by

log(x1, x2, x3) = (x1 −
1

2
x2x3)Y

1 + x2Y
2 + x3Y

3.

We consider the linear control system Σ = (G,D) where the available dy-
namic comes from

D =
n
X(x) + uY 2(x) : u ∈ R

o
.

Here X is the infinitesimal automorphism which gives rise to the derivation

D =

⎛⎜⎝ −3 0 1
0 −1 0
0 1 −2

⎞⎟⎠ .
In coordinates, the system Σ under consideration has the following form:

·
x1 = −3x1 + x3 +

1

2
x22 + ux3

·
x2 = −x2 + u
·
x3 = x2 − 2x3.

Thus, H = Span{Y 2} and since ad(X)(H) = Span{Y 2, Y 3, Y 1} = g, Σ is
locally controllable. It follows at once from Theorem 3.4 that Spec(D) ⊂
C− implies that Σ is null controllable.
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3.1. Almost null controllability

Definition 3.5. Let Σ be a control system on a Lie group G and U a
neighborhood of e ∈ G. We say that Σ is U -null controllable if for each
g ∈ G there exists a control u such that the trajectory x(g, u, ·) meets
int(U) for some t > 0. If Σ is U -null controllable for every neighborhood
U of e we say that Σ is almost null controllable.

It is clear that controllability implies null controllability, which also
implies almost null controllability. However, (any) converse is false. See
the example below.

Example. Let g denote the Heisenberg Lie algebra generated by the
vector fields Y 1 = ∂

∂x1
, Y 2 = ∂

∂x2
+ x1

∂
∂x3

and Y 3 = ∂
∂x3

with non-trivial

Lie bracket [Y 1, Y 2] = Y 3. Consider the system Σ given by

·
x = X(x) + uY 1(x), x ∈ G

where X is defined by the derivation D = (dij) ∈ Der(g) with d11 =
d22 = −1, d33 = −2, d21 = 1 and 0 otherwise. It is quite obviously that
Spec(D) ⊂ C−. Hence, Σ is almost null controllable. However it is not null
controllable since we do not have ad-rank condition (even it is transitive!):

ad(X)(Y 1) = −Y 1 + Y 2

ad(X)(−Y 1 + Y 2) = Y 1 − 2Y 2.

Indeed, it is enough to find a state that cannot be steered to the identity
in finite time. For this we need to calculate the trajectories. A straightfor-
ward calculation shows that

etD =

⎛⎜⎝ e−t 0 0
te−t e−t 0
0 0 e−2t

⎞⎟⎠ .
Now, take x = (0, 0, 1). It follows that

Xt(x) = exp(e
tD log(x)) = exp(0, 0, e−2t) = (0, 0, e−2t)

In particular, for t = 1/2 we find that the Σ-trajectory starting at x
meets a neighborhood U of the origin but ends at (0, 0, 0.367).
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Eyüp Kizil
Instituto de Ciências Matemáticas e de Computação.
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