
Comparison theorems on fractional order
difference equations

J. Jagan Mohan
VIT University, India
G. V. S. R. Deekshitulu
JNTU Kakinada, India

Received : November 2011. Accepted : December 2012

Proyecciones Journal of Mathematics
Vol. 32, No 1, pp. 31-46, March 2013.
Universidad Católica del Norte
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Abstract

One of the most efficient methods of obtaining information on the
behaviour of solutions of difference equations, even when they cannot
be solved explicitly, is the comparison principle. In general, the com-
parison principle is concerned with estimating a function satisfying
a difference inequality by the solution of the corresponding difference
equation. In the present paper, we shall establish various forms of the
principle for fractional order difference equations.
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1. Introduction

Fractional calculus has gained importance during the past three decades
due to its applicability in diverse fields of science and engineering. The
notions of fractional calculus may be traced back to the works of Euler,
but the idea of fractional difference is very recent.

J. B. Diaz and T. J. Osler [8] defined the fractional order difference by
the rather natural approach of allowing the index of differencing, in the
standard expression for the nth difference, to be any real or complex num-
ber. Later, R.Hirota [9], defined the fractional order difference operator
∇α where α is any real number, using Taylor’s series. Atsushi Nagai [10]
adopted another fractional order difference operator by modifying Hirota’s
[9] operator. Recently, G.V.S.R.Deekshitulu and J.Jagan Mohan [2] mod-
ified the definition of Atsushi Nagai [10] for 0 < α ≤ 1 in such a way that
the expression for ∇α does not involve any difference operator.

The comparison principles and the nonlinear finite difference inequali-
ties which provide explicit bounds on the unknown functions are the most
important and effective tools in the study of nonlinear finite difference equa-
tions. In the past few years many new comparison theorems and nonlinear
finite difference inequalities have been investigated in order to study the
behaviour of solutions of such equations.

In a paper published in 1973, Pachpatte [11] proved the following finite
difference inequality which provides the key to the proof of the many basic
comparison theorems on finite difference equations.

Theorem 1.1. Let f(n, r) be any function defined for n ∈ N+
0 , 0 ≤ r <∞,

and nondecreasing with respect to r for any fixed n ∈ N+
0 . Let v(n) and

w(n) be two functions defined on ∈N+
0 and u(0) ≤ v(0).

Assume further that

∇v(n+ 1) ≤ f(n, v(n)),(1.1)

∇w(n+ 1) ≥ f(n,w(n))(1.2)

for all n ∈ N+
0 . Then

v(n) ≤ w(n)(1.3)

for all n ∈ N+
0 .

In the present paper we present various comparison theorems on various
classes of nonlinear fractional order difference equations.
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2. Preliminaries

In this section, we introduce some basic definitions and results concerning
nabla discrete fractional calculus. Throughout the article, for notations
and terminology we refer [1].

Definition 2.1. The extended binomial coefficient
¡a
n

¢
, (a ∈ R, n ∈ Z) is

defined by Ã
a

n

!
=

⎧⎪⎨⎪⎩
Γ(a+1)

Γ(a−n+1)Γ(n+1) n > 0

1 n = 0
0 n < 0.

(2.1)

In 2003, Atsushi Nagai [10] gave the following definition for fractional
order difference operator.

Definition 2.2. Let α ∈ R andm be an integer such thatm− 1 < α ≤ m.
The difference operator ∇ of order α, with step length ε, is defined as

∇αu(n) =

⎧⎪⎨⎪⎩
∇α−m[∇mu(n)] = εm−α

Pn−1
j=0

¡α−m
j

¢
(−1)j∇mu(n− j) α > 0

u(n) α = 0

ε−α
Pn−1

j=0

¡α
j

¢
(−1)ju(n− j) α < 0.

The above definition contains ∇ operator and the term (−1)j inside the
summation index and hence it becomes difficult to study the properties of
solutions of fractional difference equations. To avoid this, G.V.S.R.Deekshitulu
and J.Jagan Mohan [2] rearranged the terms in Atsushi Nagai’s [10] defi-
nition as follows, for ε = m = 1.

Definition 2.3. The fractional sum operator of order α (α ∈ R) is defined
as

∇−αu(n) =
n−1X
j=0

Ã
j + α− 1

j

!
u(n− j) =

nX
j=1

Ã
n− j + α− 1

n− j

!
u(j)(2.2)

and the fractional order difference operator of order α (α ∈ R and 0 < α ≤
1) is defined as

∇αu(n) =
n−1X
j=0

Ã
j − α

j

!
∇u(n− j)(2.3)

=
nX

j=1

Ã
n− j − α− 1

n− j

!
u(j)−

Ã
n− α− 1
n− 1

!
u(0).(2.4)
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Theorem 2.1. Let u(n) and v(n) : N+
0 → R; α, β ∈ R such that 0 <

α, β, α+ β ≤ 1 and c, d are scalars. Then

1. ∇β∇γu(n) = ∇β+γu(n).

2. ∇α[cu(n) + dv(n)] = c∇αu(n) + d∇αv(n).

3. ∇−α∇αu(n) = u(n)− u(0).

4. ∇α∇−αu(n) = u(n).

5. ∇αu(0) = 0 and ∇αu(1) = u(1)− u(0) = ∇u(1).

In the following sections we present some basic comparison theorems which
can be used as powerful tools in the study of various classes of fractional
order difference equations.

3. Fractional Order Difference Equations

Definition 3.1. Let f(n, r) be any function defined for n ∈ N+
0 , 0 ≤ r <

∞ and consider a nonlinear fractional order difference equation of order α,
0 < α ≤ 1 together with an initial condition as

∇αu(n+ 1) = f(n, u(n)), u(0) = u0.(3.1)

A function v(n) defined on N+
0 is said to be an under function with

respect to the initial value problem (3.1) if

∇αv(n+ 1) ≤ f(n, v(n)).(3.2)

Similarly any function w(n) defined on N+
0 is said to be a over function

with respect to the initial value problem (3.1) if

∇αw(n+ 1) ≥ f(n,w(n)).(3.3)

The present section deals with a nonlinear fractional order difference
equation of the form (3.1) where f(n, r) is a nonnegative and nondecreasing
function with respect to r for any fixed n ∈N+

0 .

Theorem 3.1. [2] Let v(n) and w(n) are under and over functions with
respect to the initial value problem (3.1).

Then v(0) ≤ w(0) implies

v(n) ≤ w(n)(3.4)

for all n ∈ N+
0 .
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Remark 1. We note that the conclusion of Theorem 3.1 remains valid if
we replace (3.2) and (3.3) by

∇αv(n+ 1)− f(n, v(n)) ≤ ∇αw(n+ 1)− f(n,w(n))(3.5)

If we assume that u(0) < v(0) in Theorem 3.1, the equality in the
conclusion (3.4) must be dropped. We also note that the conditions given
in (3.2) and (3.3) can also be written in the form

v(n) ≤ v(0) +
n−1X
j=0

Ã
n− j + α− 2
n− j − 1

!
f(j, v(j))(3.6)

w(n) ≥ w(0) +
n−1X
j=0

Ã
n− j + α− 2
n− j − 1

!
f(j, w(j))(3.7)

and

v(n)−v(0)+
n−1X
j=0

Ã
n− j + α− 2
n− j − 1

!
f(j, v(j)) ≤ w(n)−w(0)+

n−1X
j=0

Ã
n− j + α− 2
n− j − 1

!
f(j, w(j))

(3.8)
respectively.

Theorem 3.2. [2] Let v(n) and w(n) are under and over functions with
respect to the initial value problem (3.1) such that v(0) ≤ u(0) ≤ w(0).
Then

v(n) ≤ u(n) ≤ w(n)(3.9)

for all n ∈ N+
0 .

Remark 2. The relations v(n) < u(n) and w(n) > u(n) remain valid for
n ∈N+

0 , when the inequalities (3.2) and (3.3) are replaced by

∇αv(n+ 1) < f(n, v(n)),(3.10)

∇αw(n+ 1) > f(n,w(n))(3.11)

for n ∈ N+
0 , provided the solution of (3.1) exists for all n ∈ N+

0 .

Theorem 3.3. Let g(n, r) be any function defined for n ∈ N+
0 , 0 ≤ r <∞.

Then, if an inequality
|g(n, r)| ≤ f(n, |r|)(3.12)
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is satisfied, there holds an inequality

|x(n)| ≤ y(n),(3.13)

n ∈N+
0 provided |x0| ≤ y0, where x(n) and y(n) are the solutions

∇αx(n+ 1) = g(n, x(n)), x(0) = x0,(3.14)

∇αy(n+ 1) = f(n, y(n)), y(0) = y0,(3.15)

respectively.

Proof. Suppose that (3.13) is not true. Then there exists a k ∈ N+
0

such that |x(j)| ≤ y(j) for j ≤ k and

|x(k + 1)| > y(k + 1).(3.16)

Now using the monotone property of f , for j ≤ k and (2.3),

|x(k + 1)| =

¯̄̄̄Ã
k − α

k

!
x(0) + α

kX
j=1

1

(j − α)

Ã
j − α

j

!
x(k + 1− j) + g(j, x(j))

¯̄̄̄

≤
Ã
k − α

k

!
|x(0)|+ α

kX
j=1

1

(j − α)

Ã
j − α

j

!
|x(k + 1− j)|+ |g(j, x(j))|

≤
Ã
k − α

k

!
y(0) + α

kX
j=1

1

(j − α)

Ã
j − α

j

!
y(k + 1− j) + f(j, |x(j)|)

≤
Ã
k − α

k

!
y(0) + α

kX
j=1

1

(j − α)

Ã
j − α

j

!
y(k + 1− j) + f(j, y(j))

which is a contradiction to (3.16). Hence the proof. 2

Theorem 3.4. [2] Let m1(n, r) and m2(n, r) be two nonnegative functions
defined for n ∈ N+

0 , 0 ≤ r < ∞ and nondecreasing with respect to r for
any fixed n ∈ N+

0 . Let r(n) be a function defined for n ∈ N+
0 and that

m1(n, r(n)) ≤ ∇αr(n+ 1) ≤ m2(n, r(n))(3.17)

for all n ∈ N+
0 . Let v(n) and w(n) be the solutions of the difference

equations

∇αx(n+ 1) = m1(n, x(n)), x(0) = x0,(3.18)

∇αy(n+ 1) = m2(n, y(n)), y(0) = y0(3.19)
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and suppose that x0 ≤ r(0) ≤ y0. Then

x(n) ≤ r(n) ≤ y(n), n ∈ N+
0 .(3.20)

Theorem 3.5. [2] Let h(n, r, s) be a function defined for n ∈ N+
0 , 0 ≤ r <

∞, 0 ≤ s < ∞ is nonnegative and nondecreasing with respect to r and s
for any fixed n ∈N+

0 . Let r(n) be solution of the difference equation

∇αr(n+ 1) = h(n, r(n), r(n)), r(0) = r0(3.21)

for all n ∈ N+
0 . Suppose that the inequality

∇αx(n+ 1) ≤ h(n, x(n), y(n))(3.22)

is satisfied for all n ∈ N+
0 , where the functions x(n) and y(n) are defined

for n ∈ N+
0 such that x(0) ≤ r0. Then

x(n) ≤ r(n)(3.23)

for all n ∈ N+
0 provided

y(n) ≤ r(n)(3.24)

for all n ∈ N+
0 .

Theorem 3.6. Let y(n), a(n) and b(n) be nonnegative functions defined
for n ∈ N+

0 . If

y(n) ≤ a(n) + b(n)
n−1X
j=0

Ã
n− j + α− 2
n− j − 1

!
u(j)(3.25)

for n ∈ N+
0 , then

y(n) ≤ a(n) + b(n)r(n)(3.26)

for n ∈ N+
0 , where r(n) is the solution of the fractional order difference

equation

∇αr(n+ 1) = f(n, a(n) + b(n)r(n)), r(0) = 0(3.27)

for n ∈ N+
0 .
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Proof. Define function z(n) by

z(n) =
n−1X
j=0

Ã
n− j + α− 2
n− j − 1

!
u(j).(3.28)

Then z(0) = 0, y(n) ≤ a(n) + b(n)z(n) and

∇αz(n+ 1) = f(n, y(n)) ≤ f(n, a(n) + b(n)z(n)).(3.29)

By using Theorem 3.4, we have z(n) ≤ r(n). Then y(n) ≤ a(n) +
b(n)z(n) ≤ a(n) + b(n)r(n). Hence the proof. 2

4. Fractional Order Difference Equations of Volterra Type

Definition 4.1. Let f(n, r, s) be a function defined for n ∈ N+
0 , 0 ≤ r <

∞, 0 ≤ s <∞ and g(n,m, r) be a function defined for n, m ∈ N+
0 , m ≤ n,

0 ≤ r <∞. Let u(n) be a function defined for n ∈ N+
0 .

Then a nonlinear fractional difference equation of Volterra type of order
α, 0 < α ≤ 1 is of the form

∇αu(n+ 1) = f(n, u(n),
n−1X
m=0

g(n,m, u(m))), u(0) = u0.(4.1)

A function v(n) defined on N+
0 is said to be an under function with

respect to the initial value problem (4.1) if

∇αv(n+ 1) ≤ f(n, v(n),
n−1X
m=0

g(n,m, v(m))).(4.2)

Similarly any function w(n) defined on N+
0 is said to be a over function

with respect to the initial value problem (4.1) if

∇αw(n+ 1) ≥ f(n,w(n),
n−1X
m=0

g(n,m,w(m))).(4.3)

In this section we deal with a nonlinear fractional difference equation
of Volterra type of the form (4.1) where f(n, r, s) is a nonnegative and
nondecreasing function with respect to r and s, 0 ≤ r, s <∞ for any fixed
n ∈ N+

0 and g(n,m, r) is a nonnegative and nondecreasing function with
respect to r, 0 ≤ r <∞ for any fixed n, m ∈ N+

0 .
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Theorem 4.1. [4] Let v(n) and w(n) are lower and under functions with
respect to the initial value problem (4.1). Then v(0) ≤ w(0) implies

v(n) ≤ w(n)(4.4)

for all n ∈ N+
0 .

Theorem 4.2. [4] Let h(n, r) be a nonnegative function defined for n ∈
N+
0 , 0 ≤ r < ∞. Let x(n) and y(n) be any two nonnegative functions

defined for n ∈ N+
0 . Suppose that for n ∈ N+

0 , the inequalities

∇αx(n+ 1) ≤ h(n, x(n)) +
n−1X
m=0

g(n,m, x(m)),(4.5)

∇αy(n+ 1) ≥ h(n, y(n)) +
n−1X
m=0

g(n,m, y(m))(4.6)

hold. If for any n ∈ N+
0 ,

h(n, x(n))− h(n, y(n)) ≤ −α(x(n)− y(n))(4.7)

then x(0) ≤ y(0) implies
x(n) ≤ y(n)(4.8)

for all n ∈ N+
0 .

Theorem 4.3. [4] Let v(n) and w(n) are lower and under functions with
respect to the initial value problem (4.1) such that v(0) ≤ u(0) ≤ w(0).
Then

v(n) ≤ u(n) ≤ w(n)(4.9)

respectively for all n ∈ N+
0 .

Theorem 4.4. [4] Let f1(n, r, s) and f2(n, r, s) be two nonnegative and
nondecreasing function with respect to r and s, 0 ≤ r, s <∞ for any fixed
n ∈N+

0 and g1(n,m, r) and g2(n,m, r) be a nonnegative and nondecreasing
function with respect to r, 0 ≤ r < ∞ for any fixed n, m ∈ N+

0 . Let r(n)
be a function defined for n ∈ N+

0 and that

f1(n, r(n),
n−1X
m=0

g1(n,m, r(m))) ≤ ∇αr(n+1) ≤ f2(n, r(n),
n−1X
m=0

g2(n,m, r(m)))

(4.10)
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for all n ∈ N+
0 . Let x(n) and y(n) be the solutions of the difference equa-

tions

∇αx(n+ 1) = f1(n, x(n),
n−1X
m=0

g1(n,m, x(m))), x(0) = x0,(4.11)

∇αy(n+ 1) = f2(n, y(n),
n−1X
m=0

g2(n,m, y(m))), y(0) = y0.(4.12)

and suppose that x0 ≤ r(0) ≤ y0. Then

x(n) ≤ r(n) ≤ w(n), n ∈N+
0 .(4.13)

Theorem 4.5. [4] Let x(n) and a(n) be two nonnegative functions defined
for n ∈ N+

0 . Let h(n,m) be a nonnegative function defined for n, m ∈ N+
0 .

If the inequality

∇αx(n+ 1) ≤ a(n) +
n−1X
m=0

h(n,m)f(m,x(m),
m−1X
j=0

g(m, j, x(j)))(4.14)

is satisfied for all n ∈ N+
0 . Then x(0) ≤ r(0) implies

x(n) ≤ r(n)(4.15)

where r(n) is solution of the difference equation

∇αr(n+ 1) = a(n) +
n−1X
m=0

h(n,m)f(m, r(m),
m−1X
j=0

g(m, j, r(j))), r(0) = a(0)

(4.16)
for all n ∈ N+

0 .

Corollary 4.5.1. Let x(n), y(n) and a(n) be any nonnegative functions
defined for n ∈ N+

0 . Let h(n,m) be a nonnegative function defined for n,
m ∈ N+

0 . If the inequality

∇αx(n+ 1) ≤ a(n) +
n−1X
m=0

h(n,m)f(m,x(m), y(m))(4.17)

is satisfied for all n ∈ N+
0 . Then x(0) ≤ r(0) implies

x(n) ≤ r(n)(4.18)
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provided
y(n) ≤ r(n)(4.19)

where r(n) is solution of the fractional order difference equation

∇αr(n+ 1) = a(n) +
n−1X
m=0

h(n,m)f(m, r(m), y(m)), r(0) = a(0)(4.20)

for all n ∈ N+
0 .

Theorem 4.6. Let y(n) and a(n) be nonnegative functions defined for
n ∈N+

0 . If

∇αy(n+ 1) ≤ a(n) +
n−1X
j=0

g(n, j, u(j))(4.21)

for n ∈ N+
0 , then

u(n) ≤ r(n)(4.22)

for n ∈ N+
0 , where r(n) is the solution of the fractional order difference

equation

∇αr(n+ 1) = a(n) +
n−1X
j=0

g(n, j, r(j))(4.23)

for n ∈ N+
0 .

Proof. Suppose that (4.22) is not true. Then there exists a k ∈ N+
0

such that y(j) ≤ r(j) for j ≤ k and

y(k + 1) > r(k + 1).(4.24)

From the monotone property of f , for j ≤ k,

y(j) ≤ r(j) ⇒ g(k, j, y(j)) ≤ g(k, j, r(j))

⇒
k−1X
m=0

g(k, j, y(j)) ≤
k−1X
j=0

g(k, j, r(j)).(4.25)

Now using (2.3) and (4.25),

y(k + 1) ≤
Ã
k − α

k

!
y(0) + α

kX
j=1

1

(j − α)

Ã
j − α

j

!
y(k + 1− j) +

k−1X
j=0

g(k, j, y(j))

≤
Ã
k − α

k

!
r(0) + α

kX
j=1

1

(j − α)

Ã
j − α

j

!
r(k + 1− j) +

k−1X
j=0

g(k, j, r(j))

= r(k + 1)
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which is a contradiction to (4.24). Hence the proof. 2

Remark 3. If the inequality given in (4.21) is replaced by

∇αy(n+ 1) ≥ a(n) +
n−1X
j=0

g(n, j, y(j))(4.26)

then the conclusion (4.22) in Theorem 4.6 reduces to y(n) ≥ r(n) for n ∈
N+
0 .

Theorem 4.7. Let x(n) and y(n) be solutions of the fractional order dif-
ference equations

∇αx(n+ 1) = a1(n) +
n−1X
j=0

g1(n, j, x(j))(4.27)

∇αy(n+ 1) = a2(n) +
n−1X
j=0

g2(n, j, y(j))(4.28)

where the functions x(n), y(n), a1(n), a2(n), g1(n,m, r) and g2(n,m, s) are
defined for n, m ∈ N+

0 , m ≤ n, 0 ≤ r, s <∞ and satisfy the conditions

|g1(n,m, r)− g2(n,m, s)| ≤ g(n,m, |r − s|)(4.29)

for all n, m ∈ N+
0 , m ≤ n, 0 ≤ r, s < ∞. Let r(n) be any solution of the

fractional order difference equation

∇αr(n+ 1) = a(n) +
n−1X
j=0

g(n, j, r(j))(4.30)

for n ∈ N+
0 . If

|a1(n)− a2(n)| ≤ a(n)(4.31)

then

|x(n)− y(n)| ≤ r(n)(4.32)

for all n ∈ N+
0 .
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Proof. Define a function z(n) by z(n) = |x(n) − y(n)|. Suppose that
(4.32) is not true. Then there exists a k ∈ N+

0 such that z(j) ≤ r(j) for
j ≤ k and

z(k + 1) > r(k + 1).(4.33)

Consider

z(k + 1) =

¯̄̄̄Ã
k − α

k

!
x(0) + α

kX
j=1

1

(j − α)

Ã
j − α

j

!
x(k + 1− j) + a1(k) +

kX
j=0

g1(k, j, x(j))

−
Ã
k − α

k

!
y(0)− α

kX
j=1

1

(j − α)

Ã
j − α

j

!
y(k + 1− j) + a2(k) +

kX
j=0

g2(k, j, y(j))

¯̄̄̄

≤
Ã
k − α

k

!
|x(0)− y(0)|+ α

kX
j=1

1

(j − α)

Ã
j − α

j

!
|x(k + 1− j)− y(k + 1− j)|

+ |a1(k)− a2(k)|+
kX

j=0

|g1(k, j, x(j))− g2(k, j, y(j))|

≤
Ã
k − α

k

!
z(0) + α

kX
j=1

1

(j − α)

Ã
j − α

j

!
z(k + 1− j) + a(k) +

kX
j=0

g(k, j, z(j))

≤
Ã
k − α

k

!
r(0) + α

kX
j=1

1

(j − α)

Ã
j − α

j

!
r(k + 1− j) + a(k) +

kX
j=0

g(k, j, r(j))

= r(k + 1).

which is a contradiction to (4.33). Hence the proof. 2

Corollary 4.7.1. [4] Let f be a nonnegative and nondecreasing function
with respect to its arguments. Let r(n) be solution of the fractional order
difference equation

∇αr(n+) = f(r(n), r(n− 1), ........r(n− k))(4.34)

for all n ∈ N+
0 . Suppose that the inequality

∇αx(n+ 1) ≤ f(x(n), x(n− 1), ........x(n− k))(4.35)

is satisfied for all n ∈ N+
0 , where x(j) (j = 0, 1, 2....) is a positive sequence

of functions defined for n ∈ N+
0 such that x(j) ≤ r(j), j = 0, 1, ....k. Then

x(n) ≤ r(n)(4.36)

for all n ∈ N+
0 .
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Theorem 4.8. [4] Let f be a nonnegative and nondecreasing function with
respect to its arguments. Let r(n) be solution of the difference equation

∇αr(n+ 1) = f(r(n),
n−1X
j=0

r(j),
n−2X
j=0

r(j))(4.37)

for all n ∈ N+
0 . Suppose that the inequality

∇αy(n+ 1) = f(y(n),
n−1X
j=0

y(j),
n−2X
j=0

y(j))(4.38)

is satisfied for all n ∈ N+
0 , where y(j) (j = 0, 1, 2....) is a positive sequence

of functions defined for n ∈ N+
0 such that y(0) ≤ r(0). Then

y(n) ≤ r(n)(4.39)

for all n ∈ N+
0 .
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