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Abstract

For a connected graph G of order at least two, an edge detour
monophonic set of G is a set S of vertices such that every edge of G
lies on a detour monophonic path joining some pair of vertices in S.
The edge detour monophonic number of G is the minimum cardinality
of its edge detour monophonic sets and is denoted by edm(G). We
determine bounds for it and characterize graphs which realize these
bounds. Also, certain general properties satisfied by an edge detour
monophonic set are studied. It is shown that for positive integers
a, b and c with 2 ≤ a ≤ b ≤ c, there exists a connected graph G
such that m(G) = a,m1(G) = b and edm(G) = c, where m(G) is the
monophonic number and m1(G) is the edge monophonic number of G.
Also, for any integers a and b with 2 ≤ a ≤ b, there exists a connected
graph G such that dm(G) = a and edm(G) = b, where dm(G) is the
detour monophonic number of a graph G.
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1. Introduction

By a graph G = (V,E) we mean a finite undirected connected graph with-
out loops or multiple edges. The order and size of G are denoted by n and
m, respectively. For basic graph theoretic terminology we refer to Harary
[4]. For vertices x and y in a connected graph G, the distance d(x, y) is the
length of a shortest x−y path in G. An x−y path of length d(x, y) is called
an x−y geodesic. The neighborhood of a vertex v is the set N(v) consisting
of all vertices u which are adjacent with v. A vertex v is an extreme vertex
if the subgraph induced by its neighbors is complete. A vertex v in G is
said to be a semi-extreme vertex of G if ∆ (< N(v) >) = |N(v)|− 1. That
is, the induced subgraph of N(v) has a full degree vertex in N(v).

For the graph G given in Figure 1.1, v2, v3, v4, v5 and v6 are the semi-
extreme vertices. In any graph G, each extreme vertex is a semi-extreme
vertex.

The closed interval I[x, y] consists of all vertices lying on some x − y
geodesic of G, while for S ⊆ V, I[S] =

S
x,y∈S

I[x, y]. A set S of vertices is

a geodetic set if I[S] = V, and the minimum cardinality of a geodetic set
is the geodetic number g(G). A geodetic set of cardinality g(G) is called a
g-set. The geodetic number of a graph was introduced in [1, 5] and further
studied in [2].

A chord of a path P is an edge joining two non-adjacent vertices of
P. A path P is called monophonic if it is a chordless path. A set S of
vertices of a graph G is a monophonic set if each vertex v of G lies on an
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x − y monophonic path for some elements x and y in S. The minimum
cardinality of a monophonic set of G is the monophonic number of G,
denoted bym(G). A longest x−y monophonic path is called an x−y detour
monophonic path. A set S of vertices of a graph G is a detour monophonic
set if each vertex v of G lies on an x− y detour monophonic path for some
x, y ∈ S. The minimum cardinality of a detour monophonic set of G is the
detour monophonic number of G and is denoted by dm(G). The detour
monophonic number of a graph was introduced in [9] and further studied
in [10].

An edge monophonic set of G is a set S of vertices such that every
edge of G lies on a monophonic path joining some pair of vertices in S.
The edge monophonic number of G is the minimum cardinality of its edge
monophonic sets and is denoted by m1(G). An edge monophonic set of
cardinality m1(G) is an m1-set of G.

These concepts have interesting applications in Channel Assignment
Problem in radio technologies, and the detour matrix of a connected graph
is used to discuss the applications of the detour index and hyper-detour in-
dex to a class of graphs, which in turn, capture different aspects of certain
molecular graphs associated to the molecules arising in special situations
of molecular problems in theoretical Chemistry[3,6]. Also, there are useful
applications of these concepts to security based communication network
design. In the case of designing the channel for a communication network,
although all the vertices are covered by the network when considering de-
tour monophonic sets, some of the edges may be left out. This drawback
is rectified in the case of edge detour monophonic sets so that considering
edge detour monophonic sets is more advantageous to real life application
of communication networks. This motivated us to introduce and investigate
edge detour monophonic sets in a graph.

The following theorems will be used in the sequel.

Theorem 1.1. [8] Each extreme vertex of a graph G belongs to every
monophonic set of G.

Theorem 1.2. [7] Each semi-extreme vertex of a graph G belongs to every
edge monophonic set of G.

Theorem 1.3. [9] Each extreme vertex of a graph G belongs to every
detour monophonic set of G.

Throughout this paper G denotes a connected graph with at least two
vertices.
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2. Edge detour monophonic number of a graph

Definition 2.1. Let G be a connected graph with at least two vertices.
An edge detour monophonic set of G is a set S of vertices such that every
edge of G lies on a detour monophonic path joining some pair of vertices in
S. The edge detour monophonic number of G is the minimum cardinality
of its edge detour monophonic sets and is denoted by edm(G). An edge
detour monophonic set of cardinality edm(G) is an edm-set of G.

We observe that every edge detour monophonic set is also a detour
monophonic set of G.

Example 2.2. For the graph G given in Figure 2.1, it is easily seen that
no 3-element subset of vertices is an edge detour monophonic set. It is
clear that S1 = {z, v, w, x} is an edge detour monophonic set of G so that
edm(G) = 4. Also, S2 = {z, v, w, u}, S3 = {z, x, u, v} and S4 = {z, x, u, w}
are minimum edge detour monophonic sets of G.

Note that for the graph G given in Figure 2.1, it is easily verified that
{z, v} is a minimum monophonic set of G and {z, v, w} is a minimum detour
monophonic set of G so that m(G) = 2 and dm(G) = 3. Thus the mono-
phonic number, detour monophonic number and edge detour monophonic
number of a graph are different.

Theorem 2.3. For any graph G of order n, 2 ≤ edm(G) ≤ n.
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Proof. An edge detour monophonic set needs at least two vertices and
so edm(G) ≥ 2. Clearly, the set of all vertices of G is an edge detour
monophonic set of G so that edm(G) ≤ n. 2

The bounds in Theorem 2.3 are sharp. The even cycle Cn (n ≥ 4) has
edm(Cn) = 2 and the complete graph Kn has edm(Kn) = n.

Theorem 2.4. Each semi-extreme vertex of a graph G belongs to every
edge detour monophonic set of G. In particular, if the set S of all semi-
extreme vertices of G is an edge detour monophonic set, then S is the
unique minimum edge detour monophonic set of G.

Proof. Let S be the set of all semi-extreme vertices of G and let T be
any edge detour monophonic set of G. Suppose that there exists a vertex
u ∈ S such that u /∈ T . Since ∆(< N(u) >) = |N(u)| − 1, there exists a
v ∈ N(u) such that deg<N(u)>(v) = |N(u)|− 1. Since T is an edge detour
monophonic set of G, the edge e = uv lies on an x− y detour monophonic
path P : x = x0, x1, . . . , xi−1, xi = u, xi+1 = v, . . . , xn = y with x, y ∈ T .
Since u /∈ T , it is clear that u is an internal vertex of the path P . Since
deg<N(u)>(v) = |N(u)| − 1, we see that v is adjacent to xi−1, which is a
contradiction to the fact that P is an x−y detour monophonic path. Hence
S is contained in every edge detour monophonic set of G. 2

Corollary 2.5. For any graphGwith k semi-extreme vertices,max{2, k} ≤
edm(G) ≤ n.

Corollary 2.6. For the complete graph Kn (n ≥ 2), edm(Kn) = n.

Remark 2.7. The graph G given in Figure 2.2 is non-complete on 4 ver-
tices with edm(G) = 4.
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Theorem 2.8. Let G be a connected graph with cut-vertices and S an
edge detour monophonic set of G. If v is a cut-vertex of G, then every
component of G− v contains an element of S.

Proof. Suppose that there is a component B of G − v such that B
contains no vertex of S. Let u be any vertex in B and let e be any edge
incident with u, say e = uw. Since S is an edge detour monophonic set,
there exist vertices x, y ∈ S such that e lies on some x−y detour monophonic
path P : x = u0, u1, . . . , u, w, . . . , ut = y in G with u 6= x, y. Let P1 be
the x − u subpath of P and P2 be the u − y subpath of P . Since v is a
cutvertex of G, both P1 and P2 contain v, so that P is not a path, which
is a contradiction. Thus every component of G− v contains an element of
S. 2

Theorem 2.9. For any connected graph G, no cut-vertex of G belongs to
any minimum edge detour monophonic set of G.

Proof. Let v be a cut-vertex of G and let S be a minimum edge detour
monophonic set of G. Then by Theorem 2.8, every component of G − v
contains an element of S. Let U and W be two components of G− v and
let u ∈ U and w ∈ W . Then v is an internal vertex of any u − w detour
monophonic path. Let S

0
=S − {v}. It is clear that every edge that lies on

an u− v detour monophonic path also lies on an u−w detour monophonic
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path. Hence it follows that S
0
is an edge detour monophonic set of G, which

is a contradiction to S a minimum edge detour monophonic set of G. 2

Theorem 2.10. If T is a tree with k end vertices, then edm(T ) = k.

Proof. This follows from Theorems 2.4 and 2.9. 2

Theorem 2.11. For the cycle Cn(n ≥ 3),

edm (Cn) =

(
2 if n is even
3 if n is odd.

Proof. Let Cn : v1, v2, v3, ..., vn, v1 be a cycle of order n. If n is even,
then clearly S = {v1, vn

2
+1} is a minimum edge detour monophonic set of

Cn and so edm(Cn) = 2. If n is odd, then clearly S = {v1, v2, v3} is a
minimum edge detour monophonic set of Cn and so edm(Cn) = 3. 2

Theorem 2.12. For the complete bipartite graph G = Kr,s (1 ≤ r ≤ s),
(i) edm(G) = s if r = 1
(ii) edm(G) = r if r ≥ 2.

Proof. (i) This follows from Theorem 2.10.
(ii) Let r ≥ 2 and let U = {u1, u2, . . . , ur} and W = {w1, w2, . . . , ws} be
a bipartition of G. Let S = U . We prove that S is an edm-set of G. We
observe that any u−v detour monophonic path in G is of length at most 2.
Any edge uiwj (1 ≤ i ≤ r, 1 ≤ j ≤ s) lies on the detour monophonic path
uiwjuk for any k 6= i so that S is an edge detour monophonic set of G. Let
T be any set of vertices such that |T | < |S|. If T 6 U , then there exists a
vertex ui ∈ U such that ui /∈ T . Then any edge uiwj (1 ≤ j ≤ s), does
not lie on a detour monophonic path joining a pair of vertices of T . Thus
T is not an edge detour monophonic set of G. If T 6W , then the argument
is similar. If T 6 S ∪W such that T contains at least one vertex from each
of S and W , then since |T | < |S|, there exist vertices ui ∈ U and wj ∈ W
such that ui /∈ T and wj /∈ T . It is clear that the edge uiwj does not lie
on a detour monophonic path joining any pair of vertices of T so that T
is not an edge detour monophonic set of G. Hence S is an edge detour
monophonic set with minimum cardinality so that edm(G) = |S| = r. 2

A vertex v in a graph G is called an independent vertex if the subgraph
induced by its neighbours contains no edges.
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Theorem 2.13. Let G be a connected graph. Then edm(G) = 2 if and
only if there exist two independent vertices u and v such that every edge
of G lies on a u− v detour monophonic path.

Proof. Let edm(G) = 2 and let S = {u, v} be an edge detour mono-
phonic set of G. If u and v are adjacent, then the graph is G = K2, and the
result is true. Suppose that u and v are non-adjacent in G. We prove that
u and v are independent vertices. Suppose that u is not an independent
vertex. Then there exists an edge xy such that x, y ∈ N(u). It is clear that
the edge xy does not lie on any u− v detour monophonic path so that S is
not an edge detour monophonic set, which is a contradiction. The converse
is trivial. 2

Theorem 2.14. Let G be a connected graph of order n. If G has more
than one vertex of degree n − 1, then every edge detour monophonic set
contains all vertices of degree n− 1.

Proof. Let G be a graph of order n with more than one vertex of degree
n− 1. If u and v are two vertices of degree n− 1, then uv is an edge and
it is not an edge of any detour monophonic path joining two vertices of G
other than u and v. Hence it follows that both u and v belong to every
edge detour monophonic set of G. 2

Theorem 2.15. For any graph G of order n with at least two vertices of
degree n− 1, edm(G) = n.

Proof. If all the vertices are of degree n − 1, then G = Kn and so
edm(G) = n. Otherwise, let v1, v2, . . . , vk (2 ≤ k ≤ n − 2) be the vertices
of degree n− 1. Suppose that edm(G) < n. Let S be a edm-set of G such
that |S| < n. By Theorem 2.14, S contains all the vertices v1, v2, . . . , vk.
Let v be a vertex such that v /∈ S. Then deg(v) < n− 1. Since any two of
v1, v2, . . . , vk are adjacent, the edge vvi (1 ≤ i ≤ k) does not lie on a detour
monophonic path joining a pair of vertices vj and vl (j 6= l). Similarly, since
any vj is adjacent to any vertex of S, which is different from v1, v2, . . . , vk,
the edge vvi (1 ≤ i ≤ k) does not lie on a detour monophonic path joining
a vertex vj and a vertex of S, which is different from v1, v2, . . . , vk. Now,
let u and w be two vertices of S different from v1, v2, . . . , vk. Since vi is
adjacent to both u and w, the edge vvi does not lie on a detour monophonic
path joining u and w. Thus we see that the edges vvi (1 ≤ i ≤ k) do not lie
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on any detour monophonic path joining a pair of vertices of S, which is a
contradiction to S an edge deour monophonic set of G. Hence edm(G) = n.
2

Remark 2.16. The converse of Theorem 2.15 is not true. For the graph
G given in Figure 1.1, S = {v1, v2, v3, v4, v5, v6} is a minimum edge detour
monophonic set of G so that edm(G) = 6 = n and has exactly one vertex
v1 of degree n− 1.

Theorem 2.17. Let G be a graph of order n ≥ 3. If G contains a cut-
vertex of degree n− 1, then edm(G) = n− 1.

Proof. Let v be a cut-vertex of degree n− 1. Clearly S = V − {v} is an
edge detour monophonic set of G and so edm(G) ≤ n− 1. Now, we show
that edm(G) = n− 1. Let T be any set of vertices with |T | ≤ n− 2. Then
there exist at least two vertices, say u and w, which are not in T . Since v
is adjacent to all the remaining vertices of G, the edges vu and vw do not
lie on any detour monophonic path joining any two vertices of T. Hence T
is not an edge detour monophonic set of G and so edm(G) = n− 1. 2

Remark 2.18. The converse of Theorem 2.17 is not true. For the graph
G given in Figure 2.3, S = V (G)− {y} is an edm-set and so edm(G) = 4.
However, y is a cut-vertex of degree 3.

Problem 2.19. Characterize graphs G of order n for which edm(G) =
n− 1.
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3. Realisation Results

Theorem 3.1. For every pair k, n of integers with 2 ≤ k ≤ n, there exists
a connected graph G of order n with edm(G) = k.

Proof. For k = n, let G = Kn. Then by Corollary 2.6, we have
edm(G) = n. Now, let 2 ≤ k < n. Let G be any tree of order n with k end
vertices. Then by Theorem 2.10, edm(G) = k. 2

Theorem 3.2. For any integers a, b and c with 2 ≤ a ≤ b ≤ c, there exists
a connected graph G such that m(G) = a,m1(G) = b and edm(G) = c.

Proof. We consider four cases.
Case 1. For a = b = c, any tree with a end vertices has the desired

property.
Case 2. a < b = c.
Subcase (i). a = b−1. Let C : v1, v2, . . . , v6, v1 be a cycle of order 6. Let

G be the graph obtained by adding a new vertices u1, u2, . . . , ua to C and
joining each ui(1 ≤ i ≤ a−1) to v1, joining ua to v4, and joining the vertices
v3 and v5. The graph G is shown in Figure 3.1. Let S = {u1, u2, . . . , ua}
be the set of all extreme vertices of G. By Theorems 1.1, 1.2 and 2.4, S is
a subset of every monophonic set, edge monophonic set and edge detour
monophonic set of G. Clearly, S is a monophonic set and so m(G) = a.

It is easily seen that S is not an edge monophonic set and an edge detour
monophonic set of G, since the edge v3v5 does not lie any x−y monophonic
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path or detour monophonic path, for some x, y ∈ S. Let T = S ∪ {v3}.
Clearly T is an edge monophonic set and an edge detour monophonic set
of G so that m1(G) = edm(G) = b = a+ 1.

Subcase (ii). a ≤ b − 2. Let Pb−a+1 : u1, u2, . . . , ub−a+1 be a path of
order b− a+1 and P2 : x, y be a path of order 2. Now, let H be the graph
obtained by joining the vertices ui(1 ≤ i ≤ b−a+1) with y and also joining
the vertices x and ub−a+1. Let G be the graph obtained by adding a−1 new
vertices v1, v2, . . . , va−1 to H and joining each vi(1 ≤ i ≤ a−1) to x in H. The
graph G is shown in Figure 3.2. Let S = {v1, v2, . . . , va−1, u1} be the set of
all extreme vertices of G. By Theorem 1.1, every monophonic set contains
S. Clearly, S is a monophonic set of G and so m(G) = a. It is easily verified
that S is not an edge monophonic set of G. Let S0 = S∪{u2, . . . , ub−a+1} be
the set of all semi-extreme vertices of G. By Theroems 1.2 and 2.4, S0 is a
subset of every edge monophonic set and every edge detour monophonic set
of G. Clearly, S0 is an edge monophonic set and an edge detour monophonic
set of G so that m1(G) = edm(G) = b.

Case 3. a = b < c. Let P5 : v1, v2, . . . , v5 be a path of order 5 and let P3 :
x, y, z be a path of order 3. Let H be the graph obtained from P5 and P3 by
joining the vertex x to v2 and joining the vertex z to v4. Let G be the graph
obtained by adding c − 2 new vertices u1, u2, . . . , ua−1, w1, w2, . . . , wc−a−1
to H and joining each wi(1 ≤ i ≤ c − a − 1) to v2, v4; and also joining
each ui(1 ≤ i ≤ a − 1) to v1. The graph G is shown in Figure 3.3. Let
S = {u1, u2, . . . , ua−1, v5} be the set of all extreme vertices of G. Then by
Theorems 1.1, 1.2 and 2.4, S is contained in every monophonic set, edge
monophonic set and edge detour monophonic set of G. It is easily seen that
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S is a monophonic set and also an edge monophonic set ofG so thatm(G) =
m1(G) = a. It is easily verified that the edges v2wi, wiv4(1 ≤ i ≤ c− a− 1)
and v2v3, v3v4 are not internal edges of any x− y detour monophonic path
in G, for some x, y ∈ S. Let T = S ∪ {v3, w1, w2, . . . , wc−a−1}. Clearly, T
is the unique edge detour monophonic set of G and so edm(G) = c.

Case 4. a < b < c.

Subcase (i). a = b − 1. Let P3 : x, y, z be a path of order 3, let
P5 : v1, v2, . . . , v5 be a path of order 5, and let C : u0, u1, . . . , u5, u0 be
a cycle of order 6. Let H be the graph obtained from P3, P5 and C by
joining x to v2; z to v4; u2 to u4; and identifying the vertices v5 and
u0. Let G be the graph obtained by adding a + c − b − 1 new vertices
z1, z2, . . . , za, w1, w2, . . . , wc−b−1 to H and joining each zi(1 ≤ i ≤ a− 1) to
v1, joining za to u3, and also joining each wi(1 ≤ i ≤ c− b− 1) to both v2
and v4. The graph G is shown in Figure 3.4. Let S = {z1, z2, . . . , za−1, za}
be the set of all extreme vertices of G. Then by Theorems 1.1, 1.2 and
2.4, S is contained in every monophonic set, edge monophonic set and edge
detour monophonic set of G. It is easily verified that S is a monophonic
set of G and so m(G) = a. Clearly, S is not an edge monophonic set
and an edge detour monophonic set of G. Let T = S ∪ {u2}. It is easily
verified that T is an edge monophonic set and so m1(G) = a + 1 = b.
Clearly, T is not an edge detour monophonic set of G. It is easily verified
that the edges v2wi, wiv4(1 ≤ i ≤ c− b− 1) and v2v3, v3v4 are not internal
edges of any x − y detour monophonic path in G with x, y ∈ S. Let
T 0 = T∪{v3, w1, w2, . . . , wc−b−1}. Clearly, T 0 is an edge detour monophonic
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set of G and so edm(G) = c.

Subcase (ii). a ≤ b − 2. Let P3 : x, y, z be a path of order 3, let
P5 : v1, v2, . . . , v5 be a path of order 5 and let Pb−a+1 : u1, u2, . . . , ub−a+1 be
a path of order b−a+1. LetH be the graph obtained from P3, P5 and Pb−a+1
by joining x to v2; z to v4; v4 to ub−a+1; and each vertex ui(1 ≤ i ≤ b−a+1)
to v5. Let G be the graph obtained by adding c + a − b − 2 new vertices
z1, z2, . . . , za−1, w1, w2, . . . , wc−b−1 to H and joining each zi(1 ≤ i ≤ a− 1)
to v1, and joining each wi(1 ≤ i ≤ c − b − 1) to both the vertices v2, v4.
The graph G is shown in Figure 3.5.

Let S = {z1, z2, . . . , za−1, u1} be the set of all extreme vertices of G.
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Then by Theorems 1.1, 1.2 and 2.4, S is contained in every monophonic
set, edge monophonic set and edge detour monophonic set of G. It is easily
verified that S is a monophonic set of G and so m(G) = a. Let T =
S ∪ {u2, u3, . . . , ub−a+1} be the set of all semi-extreme vertices of G. Then
by Theorems 1.2 and 2.4, T is contained in every edge monophonic set and
edge detour monophonic set of G. It is easily verified that T is an edge
monophonic set of G and so m1(G) = b. Clearly, the edges v2wi, wiv4(1 ≤
i ≤ c − b − 1) and v2v3, v3v4 are not internal edges of any x − y detour
monophonic path in G with x, y ∈ S. Let T 0 = T ∪{v3, w1, w2, . . . , wc−b−1}.
Clearly, T 0 is an edge detour monophonic set of G and so edm(G) = c. 2

Theorem 3.3. For any integers a and b with 2 ≤ a ≤ b, there exists a
connected graph G such that dm(G) = a and edm(G) = b.

Proof. We consider three cases.

Case 1. For a = b, any tree with a end vertices has the desired property.

Case 2. a = b − 1. Consider the graph G given in Figure 3.1. Let
S = {u1, u2, . . . , ua} be the set of all extreme vertices of G. By Theorems
1.3 and 2.4, S is contained in every detour monophonic set and every edge
detour monophonic set of G. Clearly, S is a detour monophonic set of G and
so dm(G) = a. It is easily seen that S is not an edge detour monophonic
set of G. Let T = S ∪ {v3}. Then T is an edge detour monophonic set of
G and so edm(G) = b = a+ 1.

Case 3. a ≤ b − 2. Let Pb−a+2 : u1, u2, . . . , ub−a+2 be a path of order
b− a+ 2 and P2 : x, y be a path of order 2. Let H be the graph obtained
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by joining each vertex ui(1 ≤ i ≤ b − a + 2) with y and also joining the
vertices x and ub−a+2. Let G be the graph obtained by addining a− 2 new
vertices v1, v2, . . . , va−2 to H and joining each vi(1 ≤ i ≤ a− 2) to x in H.
The graph G is shown in Figure 3.6. Let S = {v1, v2, . . . , va−2, u1} be the
set of all extreme vertices of G. By Theorems 1.3 and 2.4, S is contained in
every detour monophonic set and every edge detour monophonic set of G.
Then S is not a detour monophonic set and an edge detour monophonic set
of G. Let S0 = S ∪ {y}. It is easily verified that S0 is a detour monophonic
set of G and so dm(G) = a. Let S00 = S ∪ {u2, u3, . . . , ub−a+2} be the set
of all semi-extreme vertices of G. Then by Theorem 2.4, every edge detour
monophonic set contains S00. It is easily seen that S00 is an edge detour
monophonic set of G and so edm(G) = b. 2
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