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Abstract

We prove the following very accurate approximation formula for
the factorial function:

I~ n"e=", |2 1 1 _ 5929
nx=n-e 7T<'fl + G + 72(n+%) 2332800(n+ 131025055182130)3 .

This gives better results than the following approzimation formula

T 1 31 139 9871
! ~ 2 n_ —n _ _ _ _ ,
" e \/n 6 T2n  6480n2  155520n° | 65318402

which is established by the author [5] and C. Mortici [16] indepen-
dently, and gives similar results with

N 32 . 32 176 128
| ~ PN ¥lient + 22p3 4 22 4 20y 22
n ﬁ(e) \/ Ty 5" T 1215

which is established by C. Mortici in his very new paper [8].
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1. Introduction

For a positive real number z the gamma function I' and its logarithmic
derivative 1), so-called psi function or digamma function, are defined by

I'(z) = /OOO wre T du, P(z) = FF/((ZZ)) (z>0).

These two functions are considered to be the most important special func-
tions next to the Riemann zeta function. As it is well known, the gamma
function and factorials are related with the identity I'(n+1) = n! for n € N.
The problem of approximating the gamma function, in particular, the fac-
torial function has been attracted the attention of many mathematicians
recently, and a lot of paper concerning this problem have been published;
see for example [1-20]. The most well known approximation formula for n!
is the classical Stirling formula

n! ~n"e "V2mn.

Bauer [7] defined the sequence (d,,) by the relation

n!=n"e "\ /21 (n+ oy)
and numerical computations led him to infer that

(1.1) lim 3, = 0.166666... = 1/6.

Consequently, he conjectured the approximation formula

(1.2) n! = V2mn"e "\/n + 1/6.

In [2] the author shoved the superiority of (1.2) over the Stirling formula.
In [6] the author obtained the best possible scaler pairs (a, b) of real numbers
such as the approximation n! = n"e™"~%,/27(n + b) gives the best accurate
values for n!. We note that (1.2) corresponds to (a,b) = (0,1/6). The author
[3] proved (1.1) and established the following inequalities, for n € N

n"e " 27 (n + %) <n!< n"e"\/Zw (n + % — 1).
Very recently and independently, the author [5] and C. Mortici [16]
obtained the following approximation formula for n! to improve (1.2).

I n,—n 1., 1 _ 31 139 9871
nl~ v2mn’e \/ N+ &t Tn ~ §a80n7 — 155520n° T 653184007
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As a first aim of this work we determine the best scalers «, 5,a,b in
such a way that the following formula offers the best approximation for n!.

_ 1« B
1.3 L~ ne ™2 - .
(13) e \/W<n+6+n+a+(n+b)3)

In particular, we show that the best approximation of this form is ob-
tained for

9929 31 3055123

1
=== 5333800" *~ 90' * ~ T1205310"

Our second aim is to find the best scalers «, 8 such that the following
inequalities hold true:

. 1 1 L(z+1) . 1, 1

In order to prove our main results we need the following elementary but
very useful lemmas. The first lemma is proved in [19]. The algebraic and
numerical computations have been carried out with the computer software
Mathematica 8.

Lemma 1.1. If (wy,)n>1 is convergent to zero and there exists the limit

lim nk(wn —wnpt1) =cE€R,

n—oo
with k > 1, then there exists the limit

c
lim nf 1w, = .
n—oo " k-1

It is clear from this lemma that the speed of convergence of the sequence
(wp) is as higher as the value of k is greater.

Lemma 1.2. Let f be a function defined on an interval I and xlg& f(z) =

0. If f(x+1)—f(x) >0 forallx € I, then f(z) < 0. If f(x+1)— f(z) <0,
then f(x) > 0.

Proof. Let f(z+1)— f(z) > 0 for all z € I. By mathematical induction
we have f(z) < f(x 4+ n) for all n € N. Letting n — oo, we have f(x) <
nlLrglo f(z+n) =0. The proof of second part of the lemma follows from the
same argument. O
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2. Main results

The following two theorems are our main results.

Theorem 2.1. For all n € N, the best approximation of the form (1.3) is
obtained for

o 1 5= 5929 0 31 . 3055123
C727 723328007 T 907 T 11205810’
namely
~ n,—n 5929
e e \/2” (n+ b+ gy ~ )

Proof. We define for n €¢ N

1
T, =logn! —nlogn +n — §log(27r)

1 1 e} 15}
(2.1) _510g<n+6+n+a+(n+b)3>'

Successive differences of the sequence (7},) are given by

1
T, — Th+1 =nlog (1+—> —1
n

B
1 nt o B
(2.2) — —log ( ita (n+123 ) .

2 n+ g+ wFita T (n+1+0)3

If we expand the right hand side of (2.2) as a power series of n~! we get
Tn — Th1 = 5(1 — T20) 5 + =5 ( — 17 + 94500 + 810aa> ot
+ 15550 (641 — 33120« — 43200ac — 25920a%a 4 129600

—259205> % + 7975 ( — 1831 + 948150 + 160650acx
+147420a%a + 680400 — 7938002 — 68040aa? + 1474208
+204120b6> X5 + sEaEa (55609 — 29816640 — 6132672ac

—7402752a2 522547203 o — 19595520 + 416404802
+5552064aa? + 2939328a0? — 65318403 — 74027523
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1 1
(2.3) — 15676416b8 — 11757312623 + 1959552@6) —+0 <—8) .
n n

Faster convergences are are obtained by imposing the first six coeffi-
cients vanish. This results in

5020 31, 3055123
2332800° © 90" 11205810’

that is, the best approximation of the form (1.3) is

1
(24) &= 57 /B =

n!l=n"e " |27 n+ 1 + ! - 0920
! 6 ' 72(n+3L)  2332800(n + 25523 |-

O
If we put the values of «, 5,a and b obtained in (2.4) in (2.3) we find

(2.5) Ty — Ty =

39977573013907 1 40 (nfg)
10979183698560000 n” ’

By Lemma 1 this proves that

. 6 39977573013907
lim n°T,, = )
n—00 65875102191360000

namely, the sequence (T},) converges to zero like n=5. Our second theorem
provides new and elegant bounds for the gamma function.

Theorem 2.2. Let x be a non-negative real number. Then we have

1 1 Iz +1)
(2.6)a-\/1‘+6+72($+ )_ ITe—T 6 \/ _(1))

where a = 182¢ = 2.30951... and 8 = v2m = 2.50663... are the best
possible constants.

w

<D|w
Ol
©

Proof. Let g be as following

1 1 1 1
g(x) = logI‘(x—i-l)—xlogm+x—§log(27r)—§log (a:—i— 6 + m) :

Differentiation gives
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Jd(x) =9¢(x+1)—logz

- 6(9833 -+ 1297352 + 37665022 + 36450023)
0541 + 4382167 + 231012022 + 524880023 + 43740002

and
1 a(x)
/! _ ! I S
where
a(z) =-18(31+ 90:3)2(—2579729 + 70797602 4+ 467046002
490396000 4 65610000x4)
and

b(x) = (90541 + 4382162 4 231012022 + 52488002 + 4374000x4)2.

Using the functional relation ¢/(z + 1) — ¢/(x) = —1/2?%, we obtain

g'(x+1)—g"(x) =

where

—P(xz) =243646234638147649 + 4312614519882734208x
+3054037983489428522422 + 11317900450048449984023
+240030776577049466400* + 2996152168452387840002°
+21707065317547584000025 4 84383307377280000000z"
+1361194713648000000028

and

Q(z) = (1 4+ )%(31 4+ 90x)%(121 + 90x)%(77 + 552z + 1080z2)?
(1709 + 2712z + 108022)2.

Since both P and @ are positive in (0, 00), we have ¢"(z+1) —¢"(z) > 0
for x > 0. Utilizing the relation Jim Y’ (x) = 0, we see that Jim g"(z) =0.
Consequently, by the help of Lemma 2 we prove that ¢’ is strictly decreasing
in (0,00). It is well known that mlg&@(w) —logx) = 0; see, for example,
[1], so that Jim ¢'(z) = 0. This shows that g is strictly increasing in (0, 00).

Also, by Stirling formula we get lim g(x) = 0. Consequently, we have
r—00

r—00

4(0) = %log(372/77) - %10g(27r) < g(z) < Tim g(z) =0,

which is equivalent to (2.6). O
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3. Numerical computations

179

In this section we want to compare our estimation to some recent estima-
tions due to the author and C. Mortici. First, we set

a

(3.1)

and

(3.2)

n! ~

(3.3)

SORE

1

5929

1
n+ -+

6 ' 72(n+3L)  2332800(

by = V2r (%)n\/n

As shown in Table 1, the formula n! ~ a, gives better results than the
following estimate

1 1
+o+

6 72(n+3l)

3055123 3)'
n+ {1305810)

)

e e

1 1

31

139

9871

6 T2n

6480n2  155520m3

6531840n4

= Qp,

which is established by the author [5] and C. Mortici [16] independently,
and can be compared with the formula [5, 16]

(3.4)

n
2
n!l &~/ <2> {3/167144- %n3 + §n2 +

(&

32 176

176~ 128
405 1215

P

which is established by C. Mortici in his very new paper [10].

n |an—n!| |y, —n!| |Bn—n!|

1 0.0001023 0.0002085 0.0001633

2 0.0000078 0.00122768 0.0000189

10 | 0.00188 0.011978 0.000283

50 | 1.1399x10°! | 3.0925x10°% | 2.3968x10°Y
100 | 6.0971x10'*2 | 2.9144x10™* | 1.2194x10!42

Table 3.1: A comparison between some terms of a,, a,, and 3.
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