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Abstract

We prove the following very accurate approximation formula for
the factorial function:
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This gives better results than the following approximation formula
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which is established by the author [5] and C. Mortici [16] indepen-
dently, and gives similar results with

n! ≈
√
π
³n
e

´n
8

r
16n4 +

32

3
n3 +

32

9
n2 +

176

405
n− 128

1215
,

which is established by C. Mortici in his very new paper [8].
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1. Introduction

For a positive real number z the gamma function Γ and its logarithmic
derivative ψ, so-called psi function or digamma function, are defined by

Γ(z) =

Z ∞
0

uz−1e−udu, ψ(z) =
Γ0(z)

Γ(z)
(z > 0).

These two functions are considered to be the most important special func-
tions next to the Riemann zeta function. As it is well known, the gamma
function and factorials are related with the identity Γ(n+1) = n! for n ∈N.
The problem of approximating the gamma function, in particular, the fac-
torial function has been attracted the attention of many mathematicians
recently, and a lot of paper concerning this problem have been published;
see for example [1-20]. The most well known approximation formula for n!
is the classical Stirling formula

n! ≈ nne−n
√
2πn.

Bauer [7] defined the sequence (δn) by the relation

n! = nne−n
q
2π(n+ δn)

and numerical computations led him to infer that

lim
n→∞

δn = 0.166666... = 1/6.(1.1)

Consequently, he conjectured the approximation formula

n! ≈
√
2πnne−n

q
n+ 1/6.(1.2)

In [2] the author shoved the superiority of (1.2) over the Stirling formula.
In [6] the author obtained the best possible scaler pairs (a, b) of real numbers
such as the approximation n! ≈ nne−n−a

p
2π(n+ b) gives the best accurate

values for n!.We note that (1.2) corresponds to (a, b) = (0, 1/6). The author
[3] proved (1.1) and established the following inequalities, for n ∈ N

nne−n
r
2π
³
n+ 1

6

´
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r
2π
³
n+ e2
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´
.

Very recently and independently, the author [5] and C. Mortici [16]
obtained the following approximation formula for n! to improve (1.2).

n!≈
√
2πnne−n

q
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As a first aim of this work we determine the best scalers α, β, a, b in
such a way that the following formula offers the best approximation for n!.

n! ≈ nne−n
s
2π

µ
n+

1

6
+

α

n+ a
+

β

(n+ b)3

¶
.(1.3)

In particular, we show that the best approximation of this form is ob-
tained for

α =
1

72
, β =

5929

2332800
, a =

31

90
, b =

3055123

11205810
.

Our second aim is to find the best scalers α, β such that the following
inequalities hold true:

α ·
r
x+ 1

6 +
1

72(x+31
90
)
≤ Γ(x+1)

xxe−x < β ·
r
x+ 1

6 +
1

72(x+ 31
90
)
.

In order to prove our main results we need the following elementary but
very useful lemmas. The first lemma is proved in [19]. The algebraic and
numerical computations have been carried out with the computer software
Mathematica 8.

Lemma 1.1. If (ωn)n≥1 is convergent to zero and there exists the limit

lim
n→∞

nk(ωn − ωn+1) = c ∈ R,

with k > 1, then there exists the limit

lim
n→∞

nk−1ωn =
c

k − 1 .

It is clear from this lemma that the speed of convergence of the sequence
(ωn) is as higher as the value of k is greater.

Lemma 1.2. Let f be a function defined on an interval I and lim
x→∞

f(x) =

0. If f(x+1)−f(x) > 0 for all x ∈ I, then f(x) < 0 . If f(x+1)−f(x) < 0,
then f(x) > 0.

Proof. Let f(x+1)−f(x) > 0 for all x ∈ I. By mathematical induction
we have f(x) < f(x + n) for all n ∈ N. Letting n → ∞, we have f(x) <
lim
n→∞

f(x+n) = 0. The proof of second part of the lemma follows from the

same argument. 2



176 Necdet Batir

2. Main results

The following two theorems are our main results.

Theorem 2.1. For all n ∈ N, the best approximation of the form (1.3) is
obtained for

α =
1

72
, β =

5929

2332800
, a =

31

90
, b =

3055123

11205810
,

namely

n! ≈ nne−n
s
2π

µ
n+ 1

6 +
1

72(n+31
90
)
− 5929

2332800(n+ 3055123
11205810

)3

¶

Proof. We define for n ∈ N

Tn = logn!− n logn+ n− 1
2
log(2π)

− 1
2
log

Ã
n+

1

6
+

α

n+ a
+

β

(n+ b)3

!
.(2.1)

Successive differences of the sequence (Tn) are given by

Tn − Tn+1 = n log

µ
1 +

1

n

¶
− 1

− 1
2
log

⎛⎝ n+ 1
6 +

α
n+a +

β
(n+b)3

n+ 7
6 +

α
n+1+a +

β
(n+1+b)3

⎞⎠ .(2.2)

If we expand the right hand side of (2.2) as a power series of n−1 we get

Tn − Tn+1 =
1
72(1− 72α)

1
n3 +

1
540

Ã
− 17 + 945α+ 810aα

!
1
n4

+ 1
12960

Ã
641− 33120α− 43200aα− 25920a2α+ 12960α2

−25920β
!
1
n5 +

1
27216

Ã
− 1831 + 94815α+ 160650aα

+147420a2α+ 68040a3α− 79380α2 − 68040aα2 + 147420β

+204120bβ

!
1
n6 +

1
653184

Ã
55609− 2981664α− 6132672aα

−7402752a2α5225472a3α− 1959552a4α+ 4164048α2
+5552064aα2 + 2939328a2α2 − 653184α3 − 7402752β
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− 15676416bβ − 11757312b2β + 1959552αβ
!
1

n7
+O

µ
1

n8

¶
.(2.3)

Faster convergences are are obtained by imposing the first six coeffi-
cients vanish. This results in

α =
1

72
, β =

5929

2332800
, a =

31

90
, b =

3055123

11205810
,(2.4)

that is, the best approximation of the form (1.3) is

n! ≈ nne−n

vuut2πÃn+ 1
6
+

1

72(n+ 31
90)
− 5929

2332800(n+ 3055123
11205810)

3

!
.

2

If we put the values of α, β, a and b obtained in (2.4) in (2.3) we find

Tn − Tn+1 =
39977573013907

10979183698560000

1

n7
+O

³
n−8

´
.(2.5)

By Lemma 1 this proves that

lim
n→∞

n6Tn =
39977573013907

65875102191360000
,

namely, the sequence (Tn) converges to zero like n
−6. Our second theorem

provides new and elegant bounds for the gamma function.

Theorem 2.2. Let x be a non-negative real number. Then we have

α ·
s
x+

1

6
+

1

72(x+ 31
90)
≤ Γ(x+ 1)

xxe−x
< β ·

s
x+

1

6
+

1

72(x+ 31
90)

(2.6)

where α = 1452e
1709 = 2.30951... and β =

√
2π = 2.50663... are the best

possible constants.

Proof. Let g be as following

g(x) = logΓ(x+1)−x log x+x− 1
2
log(2π)− 1

2
log

Ã
x+

1

6
+

1

72(x+ 31
90)

!
.

Differentiation gives
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g0(x) = ψ(x+ 1)− log x

− 6(9833 + 129735x+ 376650x2 + 364500x3)

0541 + 438216x+ 2310120x2 + 5248800x3 + 4374000x4

and

g00(x) = ψ0(x+ 1)− 1
x
− a(x)

b(x)
,

where
a(x) = −18(31 + 90x)2(−2579729 + 7079760x+ 46704600x2

+90396000x3 + 65610000x4)
and

b(x) = (90541 + 438216x+ 2310120x2 + 5248800x3 + 4374000x4)2.

Using the functional relation ψ0(x+ 1)− ψ0(x) = −1/x2, we obtain

g00(x+ 1)− g00(x) =
P (x)

Q(x)
,

where
−P (x) = 243646234638147649 + 4312614519882734208x

+30540379834894285224x2 + 113179004500484499840x3

+240030776577049466400x4 + 299615216845238784000x5

+217070653175475840000x6 + 84383307377280000000x7

+13611947136480000000x8

and

Q(x) = x(1 + x)2(31 + 90x)2(121 + 90x)2(77 + 552x+ 1080x2)2

·(1709 + 2712x+ 1080x2)2.
Since both P and Q are positive in (0,∞), we have g00(x+1)−g00(x) > 0

for x ≥ 0. Utilizing the relation lim
x→∞

ψ0(x) = 0, we see that lim
x→∞

g00(x) = 0.

Consequently, by the help of Lemma 2 we prove that g0 is strictly decreasing
in (0,∞). It is well known that lim

x→∞
(ψ(x) − log x) = 0; see, for example,

[1], so that lim
x→∞

g0(x) = 0. This shows that g is strictly increasing in (0,∞).
Also, by Stirling formula we get lim

x→∞
g(x) = 0. Consequently, we have

g(0) =
1

2
log(372/77)− 1

2
log(2π) < g(x) < lim

x→∞
g(x) = 0,

which is equivalent to (2.6). 2
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3. Numerical computations

In this section we want to compare our estimation to some recent estima-
tions due to the author and C. Mortici. First, we set

an =

µ
n

e

¶nvuut2πÃn+ 1
6
+

1

72(n+ 31
90)
− 5929

2332800(n+ 3055123
11205810)

3

!
.

(3.1)

and

bn =
√
2π

µ
n

e

¶ns
n+

1

6
+

1

72(n+ 31
90)

.(3.2)

As shown in Table 1, the formula n! ≈ an gives better results than the
following estimate

n! ≈
√
2π

µ
n

e

¶nr
n+

1

6
+

1

72n
− 31

6480n2
− 139

155520n3
+

9871

6531840n4
= αn,

(3.3)
which is established by the author [5] and C. Mortici [16] independently,
and can be compared with the formula [5, 16]

n! ≈
√
π

µ
n

e

¶n
8

r
16n4 +

32

3
n3 +

32

9
n2 +

176

405
n− 128

1215
= βn(3.4)

which is established by C. Mortici in his very new paper [10].

n |an−n!| |αn−n!| |βn−n!|
1 0.0001023 0.0002085 0.0001633

2 0.0000078 0.00122768 0.0000189

10 0.00188 0.011978 0.000283

50 1.1399×1051 3.0925×1052 2.3968×1050
100 6.0971×10142 2.9144×10144 1.2194×10142

Table 3.1: A comparison between some terms of an, αn, and βn.
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