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Abstract

We introduce the notion of bounded ®-variation in the sense of
Lg-norm. We obtain a Riesz type result for functions of bounded ®-
variation in the mean. We also show that if the Nemytskii operator act
on the bounded ®-variation in the mean spaces into itself and satisfy
some Lipschitz condition there exist two functions g and h belonging
to the bounded ®-variation in the mean space such that

f(ty) = g(t)y + h(t), t € [0,27],
y € R.
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1. Introduction

Two centuries ago, around 1880 C. Jordan (See [3]) introduced the notion
of a function of bounded variation and established the relation between
these functions and monotonic ones; since then a number of authors such
as, Yu Medvedv (see [8]), N. Merentes (see [5,6,7], L. Maligranda and W.
Orlicz (see[4]), D. Waterman (see[13]), M Schramm (see[12]) and recently
R. Castillo (see[l], R. Castillo and Trousselot (see [2]) had been study
different spaces with same type of variation. The circle group T is defined
as the quotient R/27Z, where, as indicated by notation, 27Z is the group pf
integral multiples of 2. There is a natural identification between functions
on T and 27-periodic functions on R, which allows an implicit introduction
on notions such as continuity, differentiability, etc. for functions on 7'.

The Lebesgue measure on T also can be defined by means of the pre-
ceding identification: a function f is integrable on T if the corresponding
27-periodic funtion, which we denote again by f, integrable on [0, 27], and
we set

/f@ﬁ: 7 @) da
T 0

Let f be a real-value function in L,(1 < p < 00) on the circle group 7.
We define the corresponding interval function by f(I) = f(b) - f(a), where I
denotes the interval [a,b]. Let 0 =ty < t; < ... <t, = 27 be a partition
of [0,27] and Iy, = [z + ti—1,z + ti), if

Ik:c
vV (f,T) =su / ——— —dz} < o0
D (f ) p{kz ’tk — 1 1|p 1 }

where the supremum is taken over all partition of [0, 27], then f is said to
be of p-variation in the mean. We denote the class of all function which are
of p-bounded variation in the mean by BV, M. This concept was introduced
by operator act on BV, M into itself. BV, M equipped with the norm

£ Bvyar = 11fllp + (V" (f, TP

is a Banach space (see Theorem 2.8 in [1]). The first author in [1] in-
troduced the above concept. As a matter of fact the latter concept is a
generalization of the concept introduced by Mricz and Siddiqi who investi-
gated the convergence in the mean of the partial sums of S[f], the Furier
series of f (see[9]).

In 1910 in [11], F. Riesz defined the concept of bounded p-variation
(1 < p < ) and proved that for 1 < p < oo this class coincides with
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the class of functions f, absolutely continuous with derivative f’ € L,|a, b].
Moreover, the p-variation of a function f on [a, b] is given by || f ,||Lp[a,b] that
is

(1.1) Vo(f3la, ) = /| Lplaty

For this class we also obtained the following analogous result to (1.1)
that is if f € BV, M is such that f’ is continuous on [0,27] them f' €
L,[0,27] and
(12) Vi (f) = 2l f'| Ly

In this paper we introduced the concept of bounded ®-variation in the
mean, which generalized the above concept.

In this paper we obtain an analogous result as in (1.2) for the class
BVgM. More precisely we show that if f € BVeM is such that f’ is
continuous on [0, 27}, then f' € L®[0, 27| and

s

V() =2 [ (s (@)

(See Theorem 3.3).

2. Bounded ®—variation in the mean

In this section, we gather definitions and notations that will be used through-
out the paper.

Definition : A function @ : [0,00) — [0, 00) which satisfies the following
statements:

1. @ is continuous.

2. @ is strictly increasing.

3. ®(t)=0if and only if t =0 .
4. limy_,oo (1) = +00.

is said to be a ®—function.
Let us remaind the following, a function f € Lg([a,b]) if:

/ab@(f(x))dx < .
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Now, we are ready for the following:
Definition : Let f € Lg([0,27]) where is a ®—function and P : 0 = tg <
t1 < --- <tp =27 be a partition of [0, 27] if

|z +t) — fl@+ 1)
Vg'(f.T) = Vg —supZ/ ( TRT—Y )]tk—tkﬂd:p,

where the supremum is taken over all partitions P of [0,27] the f is said
to be a of bounded ®—variation in the mean. We denote the class of all
functions which are of bounded ®—variation in the mean by BVgM, that
is

BVeM = {f € Ls([0,27]) : V§'(f) < oo}

Remark : If we choose ®(t) = t? with 1 < p < co we get back Definition
2.1 in [1].
Next, let us see Vg'(-) as a functional defined on BV M e.g.
V' : BV M — [0,4+00) f — Vg'(f).

In the coming theorem we gather some properties of Vg ().
Theorem : Let ¢ be a ®—function

L. Vg (—f) = Vg'(f) for all f € BVaM.

2. V§'(-) is a convex function if and only if ® is convex.
3. If f is a constant function, then VJ'(f) = 0.

4. fis a 2mr—periodic function if and only if Vz"(f) = 0.
5. If ® is convex and 0 < X < 1, then VF'"(Af) < AVZ'(f).

Proof :
1. is just a straightforward application of the definition.

2. Assume ® convex, let f,g € BV M and A, u € [0, 1] such that A\+p =
1. Let P: 0=ty <ty <--- <ty =2m be a partition of [0,27]. Then
since @ is an increasing and convex function, we have

i/%q) (!(/\f + pg)(x + ) — <)‘f+t’“)|> dx

[tk — th—1]
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<Z/ <|fa:+tk) f(@ + ty)|

[tk — th—1]

lg(z +t) — g(z — tp—1)|

+ ty — tp_1|dx
: |ty — th—1] | |
2 f $+tk f +tp_
< AZ/ T~ e

2™ gl + tg) — gl + tgp_1)|
tr —tn_1|d
+uz/ 2o bty — s
SAVE(f) + Vg (g).
Finally
VIO + pg) < AVEF) + uV(g).

Which means that:
If f,g € BV M then A\f + ug € BVeM with A+ p = 1.

Conversely, assume Vg (-) is a convex function, then let us take r, s in [0, 00)
and define f(x)=rx ; x€ [0,2n],

g(x) = sz; xz € [0,2n].

Let \, pe€[0,1]] with A+ p=1land P: 0=ty <ty <---<t,=2m bea
partition of [0, 27], then > 7_; f27r @ (‘f(mﬁ’;z {k(x;r't’“ 1)‘) |tk — ti—1|dx
=S fo” (%) [tk — te—1ldx

= 472®(r) < 00, note that this holds for any partition of [0, 2x]. Thus,

Vi (f) = 4n®(v) < oo,

hence f € BVaM.

In a similar way we have
Vi (g) = 4n*®(s) < oo and g € BV M,

and also
VIS + pg) = 4m2®(\r + ps) < 0o

By hypothesis
VIS + ng) < AVE(F) + uVa (g)-
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Hence 4m2®(Ar + us) < 4m2[A®(r) + pud(s)]

O(Ar + ps) < AD(r) 4+ pud(s).

So then @ is a convex function.
. If f is a constant function on [0, 2], then V§"(f) = 0 since ®(0) = 0.

. Let f be a 2r—periodic function and P: 0=t <t; <--- <t, =27 be a
partition of [0, 27|, then an easy computation gives us the result.

Now, assume Vg'(f) = 0 for the same partition as above, then after some
easy calculations we have

QW/O%@ (If(x+27f) —f(ﬂﬁ)l) dz = 0.

2w

thus

o (L2 sl

by Definitionl(c) we obtain

|f(x +2m) — f(x)| = 0.
Therefore f(z + 27) = f(x).

. By (ii) and (iii) we get V(Af) = Vg (Af+ (1 —=X)-0)
S AVE'(f) + (1 = Vg™ (0)
VE (Af) < AVEH(f).

O
Theorem : Let ® be a convex function and f € BVgM. Then

1. If 0 < k < ky, then VI(kf) < VI(kif).
2. limg_o V" (Bf) = 0.
3. {e>0: VI (f/e) <1} 0.

Proof :

1. Let 0<k<kiand P: 0=ty <ty <--- <ty =27 be a partition of
[0, 27], then

kf(x+t5) = kf (x4 tj-1)| < [kaf(z +15) — kf(z+t-1)],
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since ® is an increasing function, we have
S 027r B (lkf(I+tj)—kf(I+tj71)|) It — tj_1|da

[ti—tj—1l

k t;)—k ti—
< i o7 @ (et e
P of [0,2r]. Hence

) |t; — tj—1|dx for any partition

Vg'(kf) < Vg (ki f).

2. Let f € BVaM note that for A > 0 then A\f € BVaM,
if0<p<AE <.

By Theorem1(v) we have

Vi eh =i (Sf) < SV < oc,
From the later inequality we obtain
B

0< lim Vi (56) < Jim SV O) = 0
and the result follows.

3. In view of part (ii) we could see that there exist an € > 0 such that
Vi (f/e) <1, that is

{e>0:Vg*(f/e) <1} #0.

Remark : This latter result allow us to take for granted that infimum of
{e>0: Vg (g) < 1} exists, since this non empty set is bounded below by
0.

Definition : Let ® be a convex function. Then

BV{'M ={f :10,2r] = R : f € BVaM and f(0) =0}

is the linear space of bounded ®—variation in the mean functions which are
nulls at zero.

Let us denote
g BVgM —RT
f—|fle =inf{e > 0: Vi"(f/e) < 1}
According to Remark 2 this infimum exists. We will now show that |- |

is a norm on BV£M . In order to do that we will need a previous lemma.
Lemma : Let ® be a convex function and f € BV{M. Then:
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L. |f|% # 0 implies vg(l—f%) <1.
2. |flg <k1fandonly1fV¢( )<1k>0.
3.0 < |f]g <1 then VI (f) < |f13.

4. {e>0: Vg (£) <1} = (|f1F, +00).

Proof :
I.Let P: 0=ty < t; < --- < t, = 27 be a partition of [0,27] and
E>|flg. Then
o (e tt) = flettia)l f
ti—tiq1|de <Vg'(+) <1
Z/ ( k|tj_tj 1’ ‘.7 J 1’ T = @(k)—

n 2 x+t; ) —f(x+t;_
and S5y 57 @ (L) It — tal da

_ 11mk}—>|f|q>m Z?:l f027r d (‘f(ai-ﬁ-tj)_f(x-l-tj—l”) |tj—tj71| dzr < 1 where

k‘tjftj,ﬂ
Vi () < 1.

2. Let |f| < k.

1. If \f\? = 0, then there exists &’ such that 0 < ¥’ < k and
< 1, since % < 4, by Theorem2 (i) we have:

Vg (f/k) < Vg'(f/K) <1
2. If 0 < |f|§ < kK, then % % again using Theorem2(i) we

g
/ /
T st

Conversely, if V(L) < 1 then {¢ > 0: VZ*(L) < 1} implies
k> |11
3. If | f|§ = 0, then by part (ii)(*) for £ > 0, we have V" (%) <1, that

iske{e>o;vg(§) <1}
Let 0 < k < 1, we invoke Theorem 1(v) to obtain

obtain

Ve (1) = Va'(

v = v (k) <o () <
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Hence V'(f) is the lower bound of the set {¢ > 0 : Vqﬁn(kg) <1}
and therefore Vg'(f) < |f|g-

If £ > 1 such that k € {¢ > 0 : Vqﬁn(g) < 1} then there exists &’
such that 0 < k' < 1 < k and this V§"(f) is a lower bound of the set
{e>0: V(L) < 13; then Vg"(f) < |f[3"

If 0 < |f|§ <1 by Theorem 1(v)

Vi) = Vi (\f!%ﬁ) < IfIFIV" (ﬁ)
also, by part (i) we have
L ym m (I
TR (ma&) =t

from this last inequality we obtain
Va'(f) < Ifls-

Cke{e>0: VR (fle) <1y e V(L) <1
& |flg <k by (i)
< ke (|f]g,+oo).

We are in a good position now to show the following.

Theorem : Let ¢ be a convex function, then |- | is a norm on BVg'M.
Proof : We are going just to check the triangle inequality property. In-
deed, let f,g € BVYM. If f =0 or g = 0, then |f + g|& = |f|% + |g|P
holds trivially.

Now, let us consider the case when f # 0 and g # 0. Thus

ym f+yg

[0)]

£ + 1918

_yp flg  f N 9l g
flg +lglg 1flg  [f1g +lglg  laglg

< flg v f N FES v (2

~flE + lglg |flg |13 +19lg 9lg

|f1g glg

~|flg +lglg o 1flE + lglE
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Hence, by Lemmal(ii) we have

If +gle <|fls +lgls"

Our next goal is to systematically define a norm on BVgM spaces. The
proof of the following Lemma is just a straightforward application of the
definition.
Lemma : Let ® be a ® function, then f € BVgM if and only if
f—f(0) € BV{M.

Now we are ready to announce the following:
Definition : Let ® be a convex ®—function and

|- |5 : BVeM — RT
felflle =1fO)+1f - f0)|
= |£(0)| +inf{e > 0: V& (f_Tf(O)) <1}.

Since f — f(0) € BVM, Lemma2 and Definition3 implies

118 = 15O+ intfe: vt (L) <1,

Now, is just routine to check that ||-||3 define a norm on BVg M spaces.
Conclusion : If ® is a convex function, the

1. (R,BV,+,|-|®) is a normed vector spaces.
2. (R,BVg,+,| - |§) is a normed vector spaces.

Theorem : Lip[0,27] C BV M, where Lip|0, 27| denotes the class of all
function which are Lipschitz on [0, 27].
Proof : Let f € Lip[0,2n], then there exists a positive constant M > 0
such that
[f(z) = f(y)| < M|z —y|

for all z,y € [0,27] Let P: 0 =tg < t; < --- < t, = 27 be a partition of
[0, 27], thus

[f(x+tk) = flo+th1)| < Mty — tg1],

then

2

Zn:/fb (’f z+ ) f(“t’“‘l)’) Ity — tooi|de < 4n®(M).
0

= |tk — o1
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This last inequality means that f € BV M.
BVa M is a Banach spaces.

In order to prove that BV M is a Banach space we will need two lemmas.

Lemma : Let ® be a convex function defines on [0, co] with ®(0) = 0.
Then the function ¥ : (0,00) — R

x—¥(z) = % is increasing on (0, 00).
We omitted the proof of Lemma3 because is just a routine calculations.

In the proof of the coming Lemma we do not use (co;) condition (see
Definition 5) as was used in [4], [7], [10] Let ® be a ®—function which is
convex. If f € BVJM, then

Hf||L1[O,27r] < M’f‘g}
with

1 1
M = — ol [ — ).
max{ZW@(%)’ T <27r)}

Proof : If | f|§ = 0, there is nothing to prove.
Next, let us consider the case |f|§ # 0 and thus we define the following set

t)| t
E-licpon. [fEXD L1
[flg |27
If t € E, then
)f(:]c+t)
R W FiFS ,
2T — t

by Lemma 3 we have

Since f(0) = 0, from this we have

Josnly (1Y oy (|f(x+2m— f(O)I) oL,

/1

2T

i
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then

2rd (L) 2 2 |fx+t) = fOIY,,
e . 'f(‘”’C*t)'d“/o”q’( g =0 )'t ol

Now, for the partition 0 < ¢ < 27 of [0,27] and from the fact that the
Lebesque measure is invariant translation we have

21®(5-) /2ﬂ|f(x)|da:§V£”< / )Sl.

iz Jo [/
Thus
[ i@ < L8
m®(5x)
If t ¢ E, then
’f(xﬂ) oy
g | 2w T

since 3= < 1, ® is convex and ®(0) =0, then

|f (z+2)]|
o (L)) (M e
\J;ﬁ t 27

& (1t
S%‘D( Tt )

Hence, for the partition 0 < ¢ < 27 of [0, 27] and so then

/2“(1, <|f(x+t>\> dn < L /%q) <|f<w+t> —f<0)|> it Oldz
0 0

2r| 17 2 TR

f

< V(e
2" )
1
< —.
T 27
Finally, by Jensen’s inequality

e 1Nl (e, 1
@(W/O \f(x+t)\27rdx>§27r/0 <I>< TR )dwﬁzﬂ.
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Thus
e [ Il <07 (51)
27| flg Jo - 2 )

[ war < oo (o) 17

and the result of the Lemma holds.

Theorem : Let ® be a ®—function which is convex, then (R, BV M, +, |-
|#) is a complete.

Proof : Let {f,},en be a Cauchy sequence in BVJM. Given € > 0, let us
choose ¢ = eM, (M > 0) the there exists a positive integer N such that:

Therefore

6/

|fp = folg < ¢
for all p,q > N.

By Lemma 4

1fp = fallLajo2m <€

for all p,g > N
This implies that { f,},en is a Cauchy sequence in (L1[0.27], |||l ,[0,24])
which is a Banach spaces.
Therefore { f,, },en converges in norm | - [z, 0,2+ to some f € L1[0, 27].
Next, we like to define:
f:00,2nr] = R

B nlgrolo falz) if #0
xHﬂ@_{ 0 if 0

Our next task is to show that:

1. f € BVIM.
2. The entire sequence {f,}, N converges to f in BVIM

By Lemmal (ii) we have

Vg? (M) < 1.

c =
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Let P: 0=ty <t1 <--- <ty =27 be a partition of [0,27]. Then

n 2 _ _ —
Z/o @ <|(fp o t|:;2 - gply et tkl)]) [tk — tp—1ldw
k=1 -
_ Xn: /027r o (\(fp —lim fy)(z + Tzz : EZPJ lim fq)(x +tk_1)]> oty |de
k=1 -
e [T (1 = f) (@t te) — (fp — fo) (T + 1))
N qll{go’;/o q) < - : ‘tk — tkil‘ ; ) |tk B tk_1|dl'

q—0 9

< lim Vg" <M>

<1

for any partition [0, 27].

Hence
vg%(Lp;f‘Y) <1 for p>N

and so f, — f € BVQM is a vector space f = f, — (f, — f) € BVQM.

Since Vg" (@) <1 one more time Lemma 1 (ii) implies that

\fo—fla <e if p>N.

And the proof is now complete.
Theorem : Let ® be a $—function which is convex.

Then (R, BVe M, +,| - ||§) is complete.
Proof : Let {f,},cn be a Cauchy sequence in BV M for all € > 0 there
exists a positive integer N such that

| fo — fqll® <e forall p,g>N.
That is
|(fp = DO+ [(fp = fo) = (fp = f)(0)[g <& for all p,g>N.
Let g, = fp — f4(0), p € N, by Lemma 2 g, € BV{M, then

lgp — 94|13 < e for all p,g > N,
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thus {g,},en is a Cauchy sequence in (BVgM,| - ) which is complete,
therefore the entire sequence {g;},eN converges to g in BVJM.

On the other hand

‘fp(o) - fq(o)’ <e fO?" all b,q > N7

this tell us that fp(o)pEN is a Cauchy sequence in R and so converges to
fo € R.
Let f = g + fo, note that f € BV M and

f(0) = (g + f0)(0) = g(0) + fo = fo.
Then
moreover

1fn = fll& = [(fn = DO+ [(fn = f) = (fa = HO)]&
= [fa(0) = F(O) + |gn — 9l&"
Since {fn(0)},en converges to fo = f(0) and {gp},n converges to g
in BVIM.
This completes the proof of the Theorem 5
1. (R,BV§,+,|-|) is a Banach spaces.

2. (R,BVs,+,| - ||#) is a Banach spaces.

Theorem : Let f € BVeM such that f’ is continuous on [0, 27], then
1’ € Lg([0,27]) and
2 ,
Vg = [ 8 ),

Definition : Let P: 0=ty < t; < --- < t, = 27 be a partition of [0, 27].
By the Mean Value Theorem there exists £ (x) € (z + tx—1,x + t)) for any
x € [0,2n7]

Such that

[f(z+te) = flz+tea)| = |F/ (& (@) [tk — troal, (+)
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by (*) we have

* lim Y (6 () (b ti)

I1PI—0 ;=
(L@t t) — f(o 4 ) B
< kzl/o ® ( o ] ) |ty — tr_1|dz.
From (**) we obtain
2
2m | (I (@)t — tia) S VG'(f). (x5 %)

(***) shows that f’ € Lg([0, 27]).
On the other hand f027r ) (lf(zﬂk)*f(xﬂ’“*l)‘) |t — tk_1|dx

[te—ti_1]
z+ty ’
) sz St
= 07r P ( fktkl 7 |tk — tk_1|d$
tp—1

[ )ae
<o <+t}tkl—dt [tk — tp—1]dw
tp—1
Invoking the Jensen inequality we have

z+ty /
|F(®)ldt
027r P (fzﬁkl—> |tk — tk_1|d$

t
ft :71 dt

JIE ()t

THtp 1
< 27 ftl’il dt
=2 [T B(f(t))dt.

THtg—1

(tk — tkfl)dx

Then
0 T

[tk — th—1] e,

Thus, the latter inequality means that

27

Ve'(f) < (f'(z))dz. (+v)

0
Combining (***) and (xv) we easily have
27

Ve'(f)= [ @(f(z))de.

0
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As we claimed.
In what follows, we will need the next:
Let ® be a convex ®—function. If lim,_,
that @ satisfy the (co;) condition.
Remark :

2(x)

= +o00, then it is said

1. Observe that the limit exists since ® is convex.

2. If the convex ®—function does not satisfy the (co1) condition, the
@im) < +o0, that is, there exists

there exist r > 0 such that lim,_,
M > 0 such that ®(z) < z for z > M.

&(x)

is increasing (Lemma 1) we have

lim%: sup {%}
=T z€(0,00) Z

3. Nemytskii Operator

3. Since

Let Q C R be a bounded open set. A function f : 2 x R — R is said it
satisfy the Caratheodory conditions if:

1. For every t € R, the function f(-,t) : @ — R is Lebesgue measurable.
2. For a.e. = € ), the function f(z,-) : 2 — R is continuous.

Set
M={p:Q—R:¢ is Lebesgue measurable},

for each ¢ € M define the operator

(Nfo)(t) = [t o(t)-

The operator N f is said Nemytskii operator generated by the function f.

The purpose of this section is to present one condition on BVgM into
itself.

Also if N f satisfy the hypothesis condition from Lemmab below, we will
show that there exist two functions g and A which belong to the bounded
®—variation in the mean space such that

f(ty) =gt)y+n(t),tel0,27n],yeR.
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Lemma : Let ® be a $—function.
Ny : BV M — BVgM if there exist a constant L > 0 such that | f(s, p(s))—

f(t,o(t))] < Llp(s) — ¢(t)| for every ¢ € M.
Proof : Let p € BV M, then

Sup{z/ ( (Npp)(x +ty) — (Nf90)<$+tk1)|)|tk_tk1’d$}

pall |tk — th—1]

n 27
—sup{Z/‘b fl@+ty oz + ) — f(90+tk1,90(95+tk1))> \tk—tk1|da:}
0

i |tk — tr—1]

|tk — th—1]

gsup{Z/ (\ﬁpx—l—tk (p(x—i_tk1)‘)|tk—tk_1|d:c}<oo.
k=17

Thus Ny € BVg M.

Theorem : Let ® be a convex ®—function which satisfy (co1) condition.
Let f:[0,27] x R — Rand the Nemytskii operator N generated by f and
defined by Ny : BV — BV

u — Nyu, with (Npu)(t) = (ft,u(t)), t € [0, 27].

If there exists a constant k£ > 0 such that

[Nju1 = Nyupllg < kllur — 23,
for uy, up € BVg". Then there exists g, h € BVy" such that
fty) =9y +h(t) , tel0,2r] , yeR.

Proof :
Let y € R, define up: [0,27] - R
t +— up(t) = y a constant function, and

Ny : BVeM — BV M
ug — Nypug with Nyug(t) = f(t,uo(t)). Note that f(t,y) € BVaM,Vy € R
by hypothesis.

Next, let ¢,t' € [0,27], t < t1; y1,92, Y1, Y5 € R.

Now, we define u; and us by

u; : [0,271] = R
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Yi if 0<s<t
I
5 ui(s) = ytl, Zz(s—t) if t<s<t
Y if ¢ <s<2m
i=1,2.
Note that each u; belong to Lip[0, 27|, thus u; — ug € Lip[0, 2xr]. Then
Y1 — Yo if 0<s<t
r
(w1 —ug)(s) = { U1 y;/_z2+y2(s—t)+y1—y2 ifr<s<t
Yl — Y if ¢/ <s<2m
Observe that
0 if0<s<t
p
() (5) = § LRI g5 <y
0 if ¢ <s<2rm

And also that (u; — uz)’ is a continuous function on [0, 27]. Now, we

can apply Theorem 7 obtaining:

o 7@ (%‘M) ds

t
%/@Ow w+m—w»
elt! — t|

t
’7T<I><‘y y2+y2 yl‘)|t/_t|
et —

DN

Hence

. r _
V,f,n (ul U2)—27T‘I)<|yl Yoy + Y2 yl’)‘tl—ﬂ,
€ elt — ¢
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and

Vg (ul u2> <1e 210 (’yl yf; yf| yl') -t <1
3 g —

@Iyi—y§+y2—y1|<q>1< 1 )
T = ot — 1|

Y1 — vb 4+ y2 — 1
_ 1 :
=47 (57—7)

Thus by Definition 4

. o (U1 — U
||u1—u2||$:|(u1—UQ)(O)|+1nf{5>O:Vq> ( L 2) g1}

Y1 — v +y2 — 1
_ 1 )
= 12! (5)

By hypothesis Nyui, Nyug belong to BV M and thus Nyuy — Nyug €
BVg M with

ly1 — y2| +

Nyu; : [0,7] & R

s = (Nyui)(s) = f(s,ui(s))
where
f(f(s,y5),0<s <<t
f(svu’(s)): f(S;%qt—y;(S—t)—i—yi),tSSSt/
f(s,uh), ¥/ <'s <2m.

Next, let us consider the partition 7 : 0 < t < ¢/ < 27, then

7@ ([ = Npe)6) — (g = Nl O g,
elt’ —t

S ngn (Nfu1 — Nng)

3

Hence
[(Nju1 — Nyug)(t') — (Nyuy — Nyug)(t)]

¥ =t 2 (s

<eg,
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|(Njuy — Nyua)(t') — (Nyus — Nyug)(t)|
=t 0 (gi=7)

Nyup — Ny —
<{5>0:V£””< S0 ! u2)§1}.

o 5
Finally using the hypothesis we have
[(Nyu1 — Nyug)(t') — (Nyus — Nyuo)(t)|
¥ =t 07 (g=7)

Nyuy — Ny —
g\(Nful—NfU2)(o)|+mf{s>o:vgt( /o gf “2)g1}

< [|[Nfur — Nyus||g
< kflur — uzl|g

:k[,yl_wH vh = v+ 12— 1] ]
- 1 ’
=t 2 (=)

Therefore
’f(tlvyi) B f(t,7y/2) B f(tvyl) + f(t)y2)|
_ 1
=1 @1 (5p)
<k[,y1_y2|+ vh— 34+ —wil ]
=t 27 (5i)
Thus

|f(t 1) — F(t,yz) — F(t, 1) + f(t,92)]

1
<kl|ly — t’—t-<I>_1<7) Ay, - }
< {Iyl Yol | Sr— + [9h — va +y2 — yi

Since ® satisfy the (co1) condition we have

1
li t’—t-®1<7):0
Yo |#7 — ¢ ot — 1] ’

more over f(-,y) is continuous, then

’f(tv y,l) - f(t/7yé) - f(t7 yl) + f(t7y2)| < k‘yi - yé + Y2 — yl’ (*)
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Next, we make the following substitution:

vVi=w+z
Yo =w
==z

y2 = 0. (*x) Putting (**) into (*) we get

[f(tw+2) = f(t,w) + f(£,0) = ft,2)] S klw+2—w—2[ =0,

thus

ft,w+2) = ft,w) + f(£,0) — f(t,2) =0,
from this latter equation we have
ftw+2) = f(t,0) = f(t,w) = f(£,0) + f(t 2) — f(2,0)
writing
P(-) = f(t,-) — f(t,0), ,thenPy(w + z) = Pi(w) + Pi(z),

which means that P; is additive and also P,(-) = f(¢,-) — f(¢,0) is a con-
tinuous function, thus P;(-) satisfy the functional Cauchy equation and its
unique solution is given by

with ¢ : [0,27] - R, y € R.

Let h:[0,27] = R

t +— h(t) = f(t,0) then h € BVeM and P,(y) = f(t,y) — f(¢,0).
Can be reduce to

g(t)y = f(t,y) — h(?)
and thus
ft.y) = g()y + h(t).

Finally, since

f(t,1) = f(£,0) = (P(1) + f(£,0)) = f(£,0) = g(t),

for ¢t € [0.27], we conclude that g € BVeM. O
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