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Abstract

We introduce the notion of bounded Φ-variation in the sense of
LΦ-norm. We obtain a Riesz type result for functions of bounded Φ-
variation in the mean. We also show that if the Nemytskii operator act
on the bounded Φ-variation in the mean spaces into itself and satisfy
some Lipschitz condition there exist two functions g and h belonging
to the bounded Φ-variation in the mean space such that

f(t, y) = g(t)y + h(t), t ∈ [0, 2π],

y ∈ R.
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1. Introduction

Two centuries ago, around 1880 C. Jordan (See [3]) introduced the notion
of a function of bounded variation and established the relation between
these functions and monotonic ones; since then a number of authors such
as, Yu Medvedv (see [8]), N. Merentes (see [5,6,7], L. Maligranda and W.
Orlicz (see[4]), D. Waterman (see[13]), M Schramm (see[12]) and recently
R. Castillo (see[1], R. Castillo and Trousselot (see [2]) had been study
different spaces with same type of variation. The circle group T is defined
as the quotientR/2πZ, where, as indicated by notation, 2πZ is the group pf
integral multiples of 2π. There is a natural identification between functions
on T and 2π-periodic functions on R, which allows an implicit introduction
on notions such as continuity, differentiability, etc. for functions on T .

The Lebesgue measure on T also can be defined by means of the pre-
ceding identification: a function f is integrable on T if the corresponding
2π-periodic funtion, which we denote again by f , integrable on [0, 2π], and
we set Z

T
f(t)dt =

Z 2π

0
f(x)dx.

Let f be a real-value function in Lp(1 < p <∞) on the circle group T .
We define the corresponding interval function by f(I) = f(b) - f(a), where I
denotes the interval [a, b]. Let 0 = t0 < t1 < . . . < tn = 2π be a partition
of [0, 2π] and Ikx = [x+ tk−1, x+ tk], if

V m
p (f, T ) = sup{

nX
k=1

Z
T

|f(Ikx)|p
|tk − tk−1|p−1

dx} <∞

where the supremum is taken over all partition of [0, 2π], then f is said to
be of p-variation in the mean. We denote the class of all function which are
of p-bounded variation in the mean by BVpM . This concept was introduced
by operator act on BVpM into itself. BVpM equipped with the norm

kfkBVpM = kfkLp + {V m
p (f, T )}1/p

is a Banach space (see Theorem 2.8 in [1]). The first author in [1] in-
troduced the above concept. As a matter of fact the latter concept is a
generalization of the concept introduced by Mricz and Siddiqi who investi-
gated the convergence in the mean of the partial sums of S[f ], the Furier
series of f (see[9]).

In 1910 in [11], F. Riesz defined the concept of bounded p-variation
(1 ≤ p < ∞) and proved that for 1 < p < ∞ this class coincides with
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the class of functions f , absolutely continuous with derivative f 0 ∈ Lp[a, b].
Moreover, the p-variation of a function f on [a, b] is given by kf 0kLp[a,b] that
is

Vp(f ; [a, b]) = kf 0kLp[a,b](1.1)

For this class we also obtained the following analogous result to (1.1)
that is if f ∈ BVpM is such that f 0 is continuous on [0, 2π] them f 0 ∈
Lp[0, 2π] and

V (m)p (f) = 2πkf 0kLp(1.2)

In this paper we introduced the concept of bounded Φ-variation in the
mean, which generalized the above concept.

In this paper we obtain an analogous result as in (1.2) for the class
BVΦM . More precisely we show that if f ∈ BVΦM is such that f 0 is
continuous on [0, 2π], then f 0 ∈ LΦ[0, 2π] and

V m
Φ (f) = 2π

Z 2π

0
Φ(f 0(x))dx.

(See Theorem 3.3).

2. Bounded Φ−variation in the mean

In this section, we gather definitions and notations that will be used through-
out the paper.
Definition : A function Φ : [0,∞) → [0,∞) which satisfies the following
statements:

1. Φ is continuous.

2. Φ is strictly increasing.

3. Φ(t) = 0 if and only if t = 0 .

4. limt→∞Φ(t) = +∞.

is said to be a Φ−function.
Let us remaind the following, a function f ∈ LΦ([a, b]) if:Z b

a
Φ(f(x))dx <∞.
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Now, we are ready for the following:
Definition : Let f ∈ LΦ([0, 2π]) where is a Φ−function and P : 0 = t0 <
t1 < · · · < tn = 2π be a partition of [0, 2π] if

V m
Φ (f,Γ) = V m

Φ (f) = sup
nX

k=1

Z
Γ
Φ

µ |f(x+ tk)− f(x+ tk−1)|
|tk − tk − 1|

¶
|tk − tk−1|dx,

where the supremum is taken over all partitions P of [0, 2π] the f is said
to be a of bounded Φ−variation in the mean. We denote the class of all
functions which are of bounded Φ−variation in the mean by BVΦM , that
is

BVΦM = {f ∈ LΦ([0, 2π]) : V
m
Φ (f) <∞} .

Remark : If we choose Φ(t) = tp with 1 < p <∞ we get back Definition
2.1 in [1].

Next, let us see V m
Φ (·) as a functional defined on BVΦM e.g.

V m
Φ : BVΦM → [0,+∞) f 7→ V m

Φ (f).

In the coming theorem we gather some properties of V m
Φ (·).

Theorem : Let Φ be a Φ−function

1. V m
Φ (−f) = V m

Φ (f) for all f ∈ BVΦM .

2. V m
Φ (·) is a convex function if and only if Φ is convex.

3. If f is a constant function, then V m
Φ (f) = 0.

4. f is a 2π−periodic function if and only if V m
Φ (f) = 0.

5. If Φ is convex and 0 ≤ λ ≤ 1, then V m
Φ (λf) ≤ λV m

Φ (f).

Proof :

1. is just a straightforward application of the definition.

2. Assume Φ convex, let f, g ∈ BVΦM and λ, µ ∈ [0, 1] such that λ+µ =
1. Let P : 0 = t0 < t1 < · · · < tn = 2π be a partition of [0, 2π]. Then
since Φ is an increasing and convex function, we have

nX
k=1

Z 2π

0
Φ

µ |(λf + µg)(x+ tk)− (λf + tk)|
|tk − tk−1|

¶
dx
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≤
nX

k=1

Z 2π

0
Φ

µ
λ
|f(x+ tk)− f(x+ tk−1)|

|tk − tk−1|

+µ
|g(x+ tk)− g(x− tk−1)|

|tk − tk−1|
|tk − tk−1|dx

≤ λ
nX

k=1

Z 2π

0

|f(x+ tk)− f(x+ tk−1)|
|tk − tk−1|

|tk − tk−1|dx

+µ
nX

k=1

Z 2π

0

|g(x+ tk)− g(x+ tk−1)|
|tk − tk−1|

|tk − tk−1|dx

≤ λV m
Φ (f) + µV m

Φ (g).

Finally

V m
Φ (λf + µg) ≤ λV m

Φ (f) + µV m
Φ (g).

Which means that:
If f, g ∈ BVΦM then λf + µg ∈ BVΦM with λ+ µ = 1.

Conversely, assume V m
Φ (·) is a convex function, then let us take r, s in [0,∞)

and define f(x)=rx ; x∈ [0, 2π],
g(x) = sx ; x ∈ [0, 2π].
Let λ, µ ∈ [0, 1] with λ+ µ = 1 and P : 0 = t0 < t1 < · · · < tn = 2π be a

partition of [0, 2π], then
Pn

k=1

R 2π
0 Φ

³ |f(x+tk)−f(x+tk−1)|
|tk−tk−1|

´
|tk − tk−1|dx

=
Pn

k=1

R 2π
0 Φ

³
r|tk−tk−1
|tk−tk−1|

´
|tk − tk−1|dx

= 4π2Φ(r) <∞, note that this holds for any partition of [0, 2π]. Thus,

V m
Φ (f) = 4π

2Φ(v) <∞,

hence f ∈ BVΦM .

In a similar way we have

V m
Φ (g) = 4π

2Φ(s) <∞ and g ∈ BVΦM,

and also

V m
Φ (λf + µg) = 4π2Φ(λr + µs) <∞.

By hypothesis

V m
Φ (λf + µg) ≤ λV m

Φ (f) + µV m
Φ (g).
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Hence 4π2Φ(λr + µs) ≤ 4π2[λΦ(r) + µΦ(s)]

Φ(λr + µs) ≤ λΦ(r) + µΦ(s).

So then Φ is a convex function.

3. If f is a constant function on [0, 2π], then V m
Φ (f) = 0 since Φ(0) = 0.

4. Let f be a 2π−periodic function and P : 0 = t0 < t1 < · · · < tn = 2π be a
partition of [0, 2π], then an easy computation gives us the result.

Now, assume V m
Φ (f) = 0 for the same partition as above, then after some

easy calculations we have

2π

Z 2π

0
Φ

µ |f(x+ 2π)− f(x)|
2π

¶
dx = 0,

thus

Φ

µ |f(x+ 2π)− f(x)|
2π

¶
= 0,

by Definition1(c) we obtain

|f(x+ 2π)− f(x)| = 0.

Therefore f(x+ 2π) = f(x).

5. By (ii) and (iii) we get Vm
Φ (λf) = V m

Φ (λf + (1− λ) · 0)
≤ λV m

Φ (f) + (1− λ)V m
Φ (0)

V m
Φ (λf) ≤ λV m

Φ (f).

2

Theorem : Let Φ be a convex function and f ∈ BVΦM . Then

1. If 0 < k < k1, then V m
Φ (kf) ≤ V m

Φ (k1f).

2. limβ→0 V m
Φ (βf) = 0.

3. {ε > 0 : V m
Φ (f/ε) ≤ 1} 6= ∅.

Proof :

1. Let 0 < k < k1 and P : 0 = t0 < t1 < · · · < tn = 2π be a partition of
[0, 2π], then

|kf(x+ tj)− kf(x+ tj−1)| ≤ |k1f(x+ tj)− kf(x+ tj−1)|,
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since Φ is an increasing function, we havePn
k=1

R 2π
0 Φ

³ |kf(x+tj)−kf(x+tj−1)|
|tj−tj−1|

´
|tj − tj−1|dx

≤ Pn
k=1

R 2π
0 Φ

³ |k1f(x+tj)−k1f(x+tj−1)|
|tj−tj−1|

´
|tj − tj−1|dx for any partition

P of [0, 2π]. Hence
V m
Φ (kf) ≤ V m

Φ (k1f).

2. Let f ∈ BVΦM note that for λ > 0 then λf ∈ BVΦM ,
if 0 < β ≤ λ(βλ ≤ 1).

By Theorem1(v) we have

V m
Φ (βf) = V m

Φ

µ
βλ

λ
f

¶
≤ β

λ
V m
Φ (λf) < +∞.

From the later inequality we obtain

0 ≤ lim
β→0

V m
Φ (βf) ≤ lim

β→0

β

λ
V m
Φ (λf) = 0

and the result follows.

3. In view of part (ii) we could see that there exist an ε > 0 such that
V m
Φ (f/ε) ≤ 1, that is

{ε > 0 : V m
Φ (f/ε) ≤ 1} 6= ∅.

Remark : This latter result allow us to take for granted that infimum of

{ε > 0 : V m
Φ

³
f
ε

´
≤ 1} exists, since this non empty set is bounded below by

0.
Definition : Let Φ be a convex function. Then

BV m
Φ M = {f : [0, 2π]→ R : f ∈ BVΦM and f(0) = 0}

is the linear space of bounded Φ−variation in the mean functions which are
nulls at zero.

Let us denote
|·|mΦ :, : BV 0ΦM → R+

f 7→ |f |Φ = inf{ε > 0 : V m
Φ (f/ε) ≤ 1}.

According to Remark 2 this infimum exists. We will now show that | · |mΦ
is a norm on BV 0ΦM . In order to do that we will need a previous lemma.
Lemma : Let Φ be a convex function and f ∈ BV 0ΦM . Then:
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1. |f |mΦ 6= 0 implies V m
Φ (

f
|f |mΦ

) ≤ 1.

2. |f |mΦ < k if and only if V m
Φ (

f
k ) ≤ 1 k > 0.

3. 0 ≤ |f |mΦ ≤ 1 then V m
Φ (f) ≤ |f |mΦ .

4. {ε > 0 : V m
Φ (

f
ε ) ≤ 1} = (|f |mΦ ,+∞).

Proof :

1. Let P : 0 = t0 < t1 < · · · < tn = 2π be a partition of [0, 2π] and
k > |f |mΦ . Then

nX
j=1

Z 2π

0
Φ

Ã
|f(x+ tj)− f(x+ tj−1)|

k|tj − tj−1|

!
|tj − tj−1| dx ≤ V m

Φ (
f

k
) ≤ 1

and
Pn

j=1

R 2π
0 Φ

³ |f(x+tj)−f(x+tj−1)|
|f |mΦ |tj−tj−1|

´
|tj − tj−1| dx

= limk→|f |Φm
Pn

j=1

R 2π
0 Φ

³ |f(x+tj)−f(x+tj−1)|
k|tj−tj−1|

´
|tj−tj−1| dx ≤ 1 where

V m
Φ (

f
|f |mΦ

) ≤ 1.

2. Let |f |mΦ < k.

1. If |f |mΦ = 0, then there exists k0 such that 0 < k0 < k and
V m
Φ (

f
k0 ) ≤ 1, since

1
k < 1

k0 , by Theorem2 (i) we have:

V m
Φ (f/k) ≤ V m

Φ (f/k
0) ≤ 1.

2. If 0 ≤ |f |mΦ < k, then 1
k < 1

|f |mΦ
, again using Theorem2(i) we

obtain

V m
Φ (

f

k
) ≤ V m

Φ (
f

|f |mΦ
) ≤ 1.

Conversely, if V m
Φ (

f
k ) ≤ 1 then {ε > 0 : V m

Φ (
f
ε ) ≤ 1} implies

k > |f |mΦ .

3. If |f |mΦ = 0, then by part (ii)(*) for k > 0, we have V m
Φ

³
f
k

´
≤ 1, that

is k ∈ {ε > 0 : V m
Φ

³
f
ε

´
≤ 1}.

Let 0 < k < 1, we invoke Theorem 1(v) to obtain

V m
Φ (f) = V m

Φ

µ
k
f

k

¶
≤ kV m

Φ

µ
f

k

¶
≤ k.
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Hence V m
Φ (f) is the lower bound of the set {ε > 0 : V m

Φ (k
f
ε ) ≤ 1}

and therefore V m
Φ (f) ≤ |f |mΦ .

If k > 1 such that k ∈ {ε > 0 : V m
Φ (

f
ε ) ≤ 1} then there exists k0

such that 0 < k0 < 1 < k and this V m
Φ (f) is a lower bound of the set

{ε > 0 : V m
Φ (

f
ε ) ≤ 1}; then V m

Φ (f) ≤ |f |mΦ .
If 0 < |f |mΦ ≤ 1 by Theorem 1(v)

V m
Φ (f) = V m

Φ

Ã
|f |mΦ

f

|f |mΦ

!
≤ |f |mΦ |V m

Φ

Ã
f

|f |mΦ

!

also, by part (i) we have

1

|f |mΦ
V m
Φ (f) ≤ V m

Φ

Ã
f

|f |mΦ

!
≤ 1,

from this last inequality we obtain

V m
Φ (f) ≤ |f |mΦ .

4. k∈ {ε > 0 : V m
Φ (f/ε) ≤ 1}⇔ V m

Φ (
f
k ) ≤ 1

⇔ |f |mΦ < k by (ii)
⇔ k ∈ (|f |mΦ ,+∞).

We are in a good position now to show the following.
Theorem : Let Φ be a convex function, then | · |mΦ is a norm on BV m

Φ M .
Proof : We are going just to check the triangle inequality property. In-
deed, let f, g ∈ BV 0ΦM . If f = 0 or g = 0, then |f + g|mΦ = |f |mΦ + |g|mΦ
holds trivially.

Now, let us consider the case when f 6= 0 and g 6= 0. Thus

V m
Φ

Ã
f + g

|f |mΦ + |g|mΦ

!

= V m
Φ

Ã
|f |mΦ

|f |mΦ + |g|mΦ
· f

|f |mΦ
+

|g|mΦ
|f |mΦ + |g|mΦ

· g

|g|mΦ

!

≤ |f |mΦ
|f |mΦ + |g|mΦ

V m
Φ

Ã
f

|f |mΦ

!
+

|g|mΦ
|f |mΦ + |g|mΦ

V m
Φ

Ã
g

|g|mΦ

!

≤ |f |mΦ
|f |mΦ + |g|mΦ

+
|g|mΦ

|f |mΦ + |g|mΦ
= 1.
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Hence, by Lemma1(ii) we have

|f + g|mΦ ≤ |f |mΦ + |g|mΦ .

Our next goal is to systematically define a norm on BVΦM spaces. The
proof of the following Lemma is just a straightforward application of the
definition.
Lemma : Let Φ be a Φ function, then f ∈ BVΦM if and only if
f − f(0) ∈ BV 0ΦM .

Now we are ready to announce the following:
Definition : Let Φ be a convex Φ−function and

k · kmΦ : BVΦM → R+

f 7→ kfkmΦ = |f(0)|+ |f − f(0)|mΦ

= |f(0)|+ inf{ε > 0 : V m
Φ

µ
f − f(0)

ε

¶
≤ 1}.

Since f − f(0) ∈ BV 0ΦM , Lemma2 and Definition3 implies

kfkmΦ = |f(0)|+ inf{ε : V m
Φ

µ
f

ε

¶
≤ 1}.

Now, is just routine to check that k·kmΦ define a norm on BVΦM spaces.
Conclusion : If Φ is a convex function, the

1. (R, BV 0Φ ,+, | · |mΦ ) is a normed vector spaces.

2. (R, BVΦ,+, | · |mΦ ) is a normed vector spaces.

Theorem : Lip[0, 2π] ⊂ BVΦM , where Lip[0, 2π] denotes the class of all
function which are Lipschitz on [0, 2π].
Proof : Let f ∈ Lip[0, 2π], then there exists a positive constant M > 0
such that

|f(x)− f(y)| ≤M |x− y|
for all x, y ∈ [0, 2π] Let P : 0 = t0 < t1 < · · · < tn = 2π be a partition of
[0, 2π], thus

|f(x+ tk)− f(x+ tk−1)| ≤M |tk − tk−1|,
then

nX
k=1

2πZ
0

Φ

µ |f(x+ tk)− f(x+ tk−1)|
|tk − tk−1|

¶
|tk − tk−1|dx ≤ 4πΦ(M).
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This last inequality means that f ∈ BVΦM .

BVΦM is a Banach spaces.

In order to prove that BVΦM is a Banach space we will need two lemmas.

Lemma : Let Φ be a convex function defines on [0,∞] with Φ(0) = 0.
Then the function Ψ : (0,∞)→ R

x 7→ Ψ(x) = Φ(x)
x is increasing on (0,∞).

We omitted the proof of Lemma3 because is just a routine calculations.

In the proof of the coming Lemma we do not use (∞1) condition (see
Definition 5) as was used in [4], [7], [10] Let Φ be a Φ−function which is
convex. If f ∈ BV 0ΦM , then

kfkL1[0,2π] ≤M |f |mΦ

with

M = max{ 1

2πΦ( 12π )
, 2πΦ1

µ
1

2π

¶
}.

Proof : If |f |mΦ = 0, there is nothing to prove.
Next, let us consider the case |f |mΦ 6= 0 and thus we define the following set

E =

(
t ∈ [0, 2π] :

¯̄̄̄
¯f(x+ t)

|f |mΦ

¯̄̄̄
¯ t

2π

)
.

If t ∈ E, then

1

2π
≤

¯̄̄
f(x+t)
|f |mΦ

¯̄̄
t

,

by Lemma 3 we have

Φ
³
1
2π

´
1
2π

≤
Φ

Ã
|f(x+t)|
|f |m

Φ
t

!
¯̄̄
f(x+t)
|f |m

Φ

¯̄̄
t

,

Since f(0) = 0, from this we have

2π

¯̄̄̄
¯f(x+ t)

|f |mΦ

¯̄̄̄
¯Φ
µ
1

2π

¶
≤ Φ

⎛⎝ |f(x+ t)− f(0)|
|f |mΦ
|t−0|

⎞⎠ |t− 0|,
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then

2πΦ( 12π )

|f |mΦ

Z 2π

0
|f(x+ t)|dx ≤

Z 2

0
πΦ

Ã
|f(x+ t)− f(0)|
|f |mΦ |t− 0|

!
|t− 0|dx.

Now, for the partition 0 < t < 2π of [0, 2π] and from the fact that the
Lebesque measure is invariant translation we have

2πΦ( 12π )

|f |mΦ

Z 2π

0
|f(x)|dx ≤ V m

Φ

Ã
f

|f |mΦ

!
≤ 1.

Thus Z 2π

0
|f(x)|dx ≤ |f |mΦ

2πΦ( 12π )
.

If t /∈ E, then ¯̄̄̄
¯f(x+ t)

|f |mΦ

¯̄̄̄
¯ < t

2π
< 1,

since t
2π < 1, Φ is convex and Φ(0) = 0, then

Φ

⎛⎝ |f(x+ t)|
|f |mΦ
2π

⎞⎠ = Φ
⎛⎝ |f(x+t)|

|f |mΦ
t

· t

2π

⎞⎠
≤ t

2π
Φ

Ã
|f(x+ t)|
|f |mΦ t

!
.

Hence, for the partition 0 < t < 2π of [0, 2π] and so then

Z 2π

0
Φ

Ã
|f(x+ t)|
2π|f |mΦ

!
dx ≤ 1

2π

Z 2π

0
Φ

Ã
|f(x+ t)− f(0)|
|t− 0||f |mΦ

!
|t− 0|dx

≤ 1

2π
V m
Φ (

f

|f |mΦ
)

≤ 1

2π
.

Finally, by Jensen’s inequality

Φ

Ã
1

|f |mΦ

Z 2π

0
|f(x+ t)| 1

2π
dx

!
≤ 1

2π

Z 2π

0
Φ

Ã
|f(x+ t)|
|f |mΦ

!
dx ≤ 1

2π
.
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Thus
1

2π|f |mΦ

Z 2π

0
|f(x)|dx ≤ Φ−1

µ
1

2π

¶
.

Therefore Z 2π

0
|f(x)|dx ≤ 2πΦ−1

µ
1

2π

¶
|f |mΦ

and the result of the Lemma holds.
Theorem : Let Φ be a Φ−function which is convex, then (R, BV 0ΦM,+, | ·
|mΦ ) is a complete.
Proof : Let {fn}n∈N be a Cauchy sequence in BV 0ΦM . Given ε > 0, let us
choose ε0 = εM , (M > 0) the there exists a positive integer N such that:

|fp − fq|mΦ <
ε0

M
= ε

for all p, q ≥ N .

By Lemma 4

kfp − fqkL1[0,2π] < ε

for all p, q ≥ N
This implies that {fn}n∈N is a Cauchy sequence in (L1[0.2π], k·kL1[0,2π])

which is a Banach spaces.
Therefore {fn}n∈N converges in norm k · kL1[0,2π] to some f ∈ L1[0, 2π].
Next, we like to define:

f : [0, 2π]→ R

x 7→ f(x) =

(
lim
n→∞

fn(x) if x 6= 0
0 if x 6= 0

Our next task is to show that:

1. f ∈ BV 0ΦM .

2. The entire sequence {fn}n∈N converges to f in BV 0ΦM

By Lemma1 (ii) we have

V m
Φ

µ
fp − fq

ε

¶
≤ 1.
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Let P : 0 = t0 < t1 < · · · < tn = 2π be a partition of [0, 2π]. Then

nX
k=1

Z 2π

0
Φ

µ |(fp − f)(x+ tk)− (fp − f)(x+ tk−1)|
|tk − tk−1|

¶
|tk − tk−1|dx

=
nX

k=1

Z 2π

0
Φ

µ |(fp − lim fq)(x+ tk)− (fp − lim fq)(x+ tk−1)|
|tk − tk−1|

¶
|tk−tk−1|dx

= lim
q→∞

nX
k=1

Z 2π

0
Φ

µ |(fp − fq)(x+ tk)− (fp − fq)(x+ tk−1)|
|tk − tk−1|

¶
|tk − tk−1|dx

≤ lim
q→∞

V m
Φ

µ
fp − fq

ε

¶
≤ 1

for any partition [0, 2π].

Hence

V m
Φ

µ
fp − fq

ε

¶
≤ 1 for p > N

and so fp − f ∈ BV 0ΦM is a vector space f = fp − (fp − f) ∈ BV 0ΦM .

Since V m
Φ

³
fp−f
ε

´
≤ 1 one more time Lemma 1 (ii) implies that

|fp − f |mΦ < ε if p > N.

And the proof is now complete.
Theorem : Let Φ be a Φ−function which is convex.

Then (R, BVΦM,+, k · kmΦ ) is complete.
Proof : Let {fn}n∈N be a Cauchy sequence in BVΦM for all ε > 0 there
exists a positive integer N such that

kfp − fqkmΦ < ε for all p, q > N.

That is

|(fp − fq)(0)|+ |(fp − fq)− (fp − fq)(0)|mΦ < ε for all p, q > N.

Let gp = fp − fq(0), p ∈N, by Lemma 2 gp ∈ BV 0ΦM , then

|gp − gq|mΦ < ε for all p, q > N,
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thus {gp}p∈N is a Cauchy sequence in (BV 0ΦM, | · |mΦ ) which is complete,
therefore the entire sequence {gp}p∈N converges to g in BV 0ΦM .

On the other hand

|fp(0)− fq(0)| < ε for all p, q > N,

this tell us that fp(0)p∈N is a Cauchy sequence in R and so converges to
f0 ∈ R.

Let f = g + f0, note that f ∈ BVΦM and

f(0) = (g + f0)(0) = g(0) + f0 = f0.

Then
g = f − f(0),

moreover

kfn − fkmΦ = |(fn − f)(0)|+ |(fn − f)− (fn − f)(0)|mΦ

= |fn(0)− f(0)|+ |gn − g|mΦ .
Since {fn(0)}n∈N converges to f0 = f(0) and {gp}p∈N converges to g

in BV 0ΦM .

This completes the proof of the Theorem 5

1. (R, BV 0Φ ,+, | · |mΦ ) is a Banach spaces.

2. (R, BVΦ,+, k · kmΦ ) is a Banach spaces.

Theorem : Let f ∈ BVΦM such that f 0 is continuous on [0, 2π], then
f 0 ∈ LΦ([0, 2π]) and

V m
Φ (f) = 2π

Z 2π

0
Φ(f 0(x))dx.

Definition : Let P : 0 = t0 < t1 < · · · < tn = 2π be a partition of [0, 2π].
By the Mean Value Theorem there exists ξk(x) ∈ (x+ tk−1, x+ tk) for any
x ∈ [0, 2π]

Such that

|f(x+ tk)− f(x+ tk−1)| = |f 0(ξk(x))||tk − tk−1|, (∗)
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by (*) we have

π lim
kPk→0

nX
k=1

Φ(f 0(ξk(x)))(tk − tk−1)

≤
nX

k=1

Z 2π

0
Φ

µ |f(x+ tk)− f(x+ tk−1)|
|tk − tk−1|

¶
|tk − tk−1|dx.

From (**) we obtain

2π

Z 2π

0
Φ(f 0(ξk(x)))(tk − tk−1) ≤ V m

Φ (f). (∗ ∗ ∗)

(***) shows that f 0 ∈ LΦ([0, 2π]).

On the other hand
R 2π
0 Φ

³ |f(x+tk)−f(x+tk−1)|
|tk−tk−1|

´
|tk − tk−1|dx

=
R 2π
0 Φ

⎛⎝
¯̄̄R x+tk
x+tk−1

f 0(t)dt

¯̄̄
R tk
tk−1

dt

⎞⎠ |tk − tk−1|dx

≤
R 2π
0 Φ

ÃR x+tk
x+tk−1

|f 0(t)|dtR tk
tk−1

dt

!
|tk − tk−1|dx

Invoking the Jensen inequality we haveR 2π
0 Φ

ÃR x+tk
x+tk−1

|f 0(t)|dtR tk
tk−1

dt

!
|tk − tk−1|dx

≤ 2π
R x+tk
x+tk−1

Φ(f 0(t))dtR tk
tk−1

dt
(tk − tk−1)dx

= 2π
R x+tk
x+tk−1

Φ(f 0(t))dt.

ThenZ 2π

0
Φ

µ |f(x+ tk)− f(x+ tk−1)|
|tk − tk−1|

¶
|tk − tk−1|dx ≤ 2π

Z x+tk

x+tk−1
Φ(f 0(t))dt.

Thus, the latter inequality means that

V m
Φ (f) ≤

Z 2π

0
Φ(f 0(x))dx. (∗v)

Combining (***) and (xv) we easily have

V m
Φ (f) =

Z 2π

0
Φ(f 0(x))dx.
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As we claimed.

In what follows, we will need the next:
Let Φ be a convex Φ−function. If limx→

Φ(x)
x = +∞, then it is said

that Φ satisfy the (∞1) condition.

Remark :

1. Observe that the limit exists since Φ is convex.

2. If the convex Φ−function does not satisfy the (∞1) condition, the

there exist r > 0 such that limx→
Φ(x)
x < +∞, that is, there exists

M > 0 such that Φ(x) ≤ x for x ≥M .

3. Since Φ(x)
x is increasing (Lemma 1) we have

lim
x→
Φ(x)

x
= sup

x∈(0,∞)

½
Φ(x)

x

¾
.

3. Nemytskii Operator

Let Ω ⊂ R be a bounded open set. A function f : Ω ×R → R is said it
satisfy the Caratheodory conditions if:

1. For every t ∈ R, the function f(·, t) : Ω→ R is Lebesgue measurable.

2. For a.e. x ∈ Ω, the function f(x, ·) : Ω→ R is continuous.

Set

M = {ϕ : Ω→ R : ϕ is Lebesgue measurable},

for each ϕ ∈M define the operator

(Nfϕ)(t) = f(t, ϕ(t)).

The operator Nf is said Nemytskii operator generated by the function f .

The purpose of this section is to present one condition on BVΦM into
itself.

Also if Nf satisfy the hypothesis condition from Lemma5 below, we will
show that there exist two functions g and h which belong to the bounded
Φ−variation in the mean space such that

f(t, y) = g(t)y + h(t) , t ∈ [0, 2π] , y ∈ R.
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Lemma : Let Φ be a Φ−function.
Nf : BVΦM → BVΦM if there exist a constant L > 0 such that |f(s, ϕ(s))−
f(t, ϕ(t))| ≤ L|ϕ(s)− ϕ(t)| for every ϕ ∈M .

Proof : Let ϕ ∈ BVΦM , then

sup

⎧⎨⎩
nX

k=1

2πZ
0

Φ

µ |(Nfϕ)(x+ tk)− (Nfϕ)(x+ tk−1)|
|tk − tk−1|

¶
|tk − tk−1|dx

⎫⎬⎭
= sup

⎧⎨⎩
nX

k=1

2πZ
0

Φ

µ |f(x+ tk, ϕ(x+ tk))− f(x+ tk−1, ϕ(x+ tk−1))

|tk − tk−1|

¶
|tk − tk−1|dx

⎫⎬⎭
≤ sup

⎧⎨⎩
nX

k=1

2πZ
0

Φ

µ |ϕ(x+ tk)− ϕ(x+ tk−1)|
|tk − tk−1|

¶
|tk − tk−1|dx

⎫⎬⎭ <∞.

Thus Nf ∈ BVΦM .

Theorem : Let Φ be a convex Φ−function which satisfy (∞1) condition.
Let f : [0, 2π]×R→ Rand the Nemytskii operator Nf generated by f and
defined by Nf : BVΦ → BVΦ
u 7→ Nfu, with (Nfu)(t) = (ft, u(t)), t ∈ [0, 2π].
If there exists a constant k > 0 such that

kNfu1 −Nfu2kmΦ ≤ kku1 − u2kmΦ ,

for u1, u2 ∈ BV m
Φ . Then there exists g, h ∈ BV m

Φ such that

f(t, y) = g(t)y + h(t) , t ∈ [0, 2π] , y ∈ R.

Proof :
Let y ∈ R, define u0 : [0, 2π]→ R
t 7→ u0(t) = y a constant function, and

Nf : BVΦM → BVΦM
u0 7→ Nfu0 with Nfu0(t) = f(t, u0(t)). Note that f(t, y) ∈ BVΦM , ∀y ∈ R
by hypothesis.

Next, let t, t0 ∈ [0, 2π], t < t1; y1, y2, y
0
1, y

0
2 ∈ R.

Now, we define u1 and u2 by

ui : [0, 2π]→ R
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s 7→ ui(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

yi if 0 ≤ s < t

y0i − yi
t0 − t

(s− t) if t ≤ s ≤ t0

y0i if t0 < s ≤ 2π
i=1,2.

Note that each ui belong to Lip[0, 2π], thus u1 − u2 ∈ Lip[0, 2π]. Then

(u1 − u2)(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

y1 − y2 if 0 ≤ s < t

y01 − y1 − y02 + y2
t0 − t

(s− t) + y1 − y2 if t ≤ s ≤ t0

y01 − y02 if t0 < s ≤ 2π

Observe that

(u1 − u2)
0(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if 0 ≤ s < t

y01 − y1 − y02 + y2
t0 − t

if t ≤ s ≤ t0

0 if t0 < s ≤ 2π

And also that (u1 − u2)
0 is a continuous function on [0, 2π]. Now, we

can apply Theorem 7 obtaining:

2π

2πZ
0

Φ

µ
(u1 − u2)

0(s)

ε

¶
ds

= 2π

t0Z
t

Φ

µ |y01 − y02 + y2 − y1|
ε|t0 − t|

¶

= 2πΦ

µ |y01 − y02 + y2 − y1|
ε|t0 − t|

¶
|t0 − t|.

Hence

V m
Φ

µ
u1 − u2

ε

¶
= 2πΦ

µ |y01 − y02 + y2 − y1|
ε|t0 − t|

¶
|t0 − t|,
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and

V m
Φ

µ
u1 − u2

ε

¶
≤ 1⇔ 2πΦ

µ |y01 − y02 + y2 − y1|
ε|t0 − t|

¶
|t0 − t| ≤ 1

⇔ |y01 − y02 + y2 − y1|
ε|t0 − t| ≤ Φ−1

µ
1

2π|t0 − t|

¶

⇔ |y01 − y02 + y2 − y1|
|t0 − t|Φ−1

³
1

2π|t0−t|

´ .
Thus by Definition 4

ku1 − u2kmΦ = |(u1 − u2)(0)|+ inf
½
ε > 0 : V m

Φ

µ
u1 − u2

ε

¶
≤ 1

¾

|y1 − y2|+
|y01 − y02 + y2 − y1|
|t0 − t|Φ−1

³
1

2π|t0−t|

´ .
By hypothesis Nfu1, Nfu2 belong to BVΦM and thus Nfu1 −Nfu2 ∈

BVΦM with

Nfui : [0, π]⇔ R

s 7→ (Nfui)(s) = f(s, ui(s))

where

f (s, u, (s)) =

⎧⎪⎨⎪⎩
f (f(s, yi), 0 ≤ s ≤< t

f
³
s,

y0i−yi
t0−t (s− t) + yi

´
, t ≤ s ≤ t0

f(s, y0i), t
0 < s ≤ 2π.

Next, let us consider the partition π : 0 < t < t0 < 2π, then

2πZ
0

Φ

µ |(Nfu1 −Nfu2)(t
0)− (Nfu1 −Nfu2)(t)|
ε|t0 − t|

¶
|t0 − t|dx

≤ V m
Φ

µ
Nfu1 −Nfu2

ε

¶
Hence

|(Nfu1 −Nfu2)(t
0)− (Nfu1 −Nfu2)(t)|

|t0 − t| · Φ−1
³

1
2π|t0−t|

´ ≤ ε,
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|(Nfu1 −Nfu2)(t
0)− (Nfu1 −Nfu2)(t)|

|t0 − t| · Φ−1
³

1
2π|t0−t|

´
≤
½
ε > 0 : V m

Φ

µ
Nfu1 −Nf − u2

ε

¶
≤ 1

¾
.

Finally using the hypothesis we have

|(Nfu1 −Nfu2)(t
0)− (Nfu1 −Nfu2)(t)|

|t0 − t| · Φ−1
³

1
2π|t0−t|

´
≤ |(Nfu1 −Nfu2)(0)|+ inf

½
ε > 0 : V m

Φ

µ
Nfu1 −Nf − u2

ε

¶
≤ 1

¾
≤ kNfu1 −Nfu2kmΦ
≤ kku1 − u2kmΦ

= k

⎡⎣|y1 − y2|+
|y01 − y02 + y2 − y1|
|t0 − t| · Φ−1

³
1

2π|t0−t|

´
⎤⎦ .

Therefore

|f(t0, y01)− f(t0, y02)− f(t, y1) + f(t, y2)|
|t0 − t| · Φ−1

³
1

2π|t0−t|

´
≤ k

⎡⎣|y1 − y2|+
|y01 − y02 + y2 − y1|
|t0 − t| · Φ−1

³
1

2π|t0−t|

´
⎤⎦ .

Thus

|f(t0, y01)− f(t0, y02)− f(t, y1) + f(t, y2)|

≤ k

∙
|y1 − y2||t0 − t| · Φ−1

µ
1

2π|t0 − t|

¶
+ |y01 − y02 + y2 − y1|

¸
.

Since Φ satisfy the (∞1) condition we have

lim
t0→t

|t0 − t| · Φ−1
µ

1

2π|t0 − t|

¶
= 0,

more over f(·, y) is continuous, then

|f(t, y01)− f(t0, y02)− f(t, y1) + f(t, y2)| ≤ k|y01 − y02 + y2 − y1| (∗)
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Next, we make the following substitution:
y’1 = w + z
y02 = w
y1 = z
y2 = 0. (∗∗) Putting (**) into (*) we get

|f(t, w + z)− f(t, w) + f(t, 0)− f(t, z)| ≤ k|w + z − w − z| = 0,

thus

f(t, w + z)− f(t, w) + f(t, 0)− f(t, z) = 0,

from this latter equation we have

f(t, w + z)− f(t, 0) = f(t, w)− f(t, 0) + f(t, z)− f(t, 0)

writing

Pt(·) = f(t, ·)− f(t, 0), , thenPt(w + z) = Pt(w) + Pt(z),

which means that Pt is additive and also Pt(·) = f(t, ·) − f(t, 0) is a con-
tinuous function, thus Pt(·) satisfy the functional Cauchy equation and its
unique solution is given by

Pt(y) = g(t)y,

with g : [0, 2π]→ R, y ∈ R.
Let h:[0,2π]→ R
t 7→ h(t) = f(t, 0) then h ∈ BVΦM and Pt(y) = f(t, y)− f(t, 0).
Can be reduce to

g(t)y = f(t, y)− h(t)

and thus

f(t, y) = g(t)y + h(t).

Finally, since

f(t, 1)− f(t, 0) = (Pt(1) + f(t, 0))− f(t, 0) = g(t),

for t ∈ [0.2π], we conclude that g ∈ BVΦM . 2
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6101 Cumaná, Edo. Sucre,
Venezuela
e-mail : eddycharles2007@hotmail.com




