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Abstract

A (p, q)-graph G is said to be square sum, if there exists a bijection
f : V (G) → {0, 1, 2, . . . , p − 1} such that the induced function f∗ :
E(G)→ N given by f∗(uv) = (f(u))2 + (f(v))2 for every uv ∈ E(G)
is injective. In this paper we initiate a study on square sum graphs
and prove that trees, unicyclic graphs, mCn, m ≥ 1, cycle with a
chord, the graph obtained by joining two copies of cycle Cn by a path
Pk and the graph defined by path union of k copies of Cn, when the
path Pn ∼= P2 are square sum.
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1. Introduction

If the vertices of the graph are assigned values subject to certain condi-
tions is known as graph labeling. A dynamic survey on graph labeling is
regularly updated by Gallian [4]. Pairs of positive integers whose sum of
squares are distinct, constitute an important part of number theory. For
example, in number theory a positive integer n has a representation as a
sum of two squares if n = a2 + b2 for some a, b ∈ Z. Exploration of the
following problems were of great interest which inspired the curiosity of
number theorists.

Problem 1.1. What numbers can be written as sum of squares of two
numbers? In general does there exists a number k so that all numbers can
be written as sum of k squares?

In additive number theory, Pierre de Fermat’s theorem on sums of two
squares states that an odd prime p is expressible as p = x2 + y2 with x
and y integers, if and only if p ∼= (1 mod 4). For example, the primes
5, 13, 17, 29, 37 and 41 are all congruent to 1 mod 4, and they can be
expressed as sums of two squares in the following ways: 5 = 12 + 22;
13 = 22 + 32; 17 = 12 + 42; 29 = 22 + 52; 37 = 12 + 62; 41 = 42 + 52

etc. On the other hand, the primes 3, 7, 11, 19, 23 and 31 are all congru-
ent to 3 modulo 4, and none of them can be expressed as the sum of two
squares. Albert Girard was the first to make the observation (in 1632) and
Fermat was first to claim a proof of it. Fermat announced this theorem
in a letter to Marin Mersenne dated December 25, 1640; for this reason
this theorem is sometimes called Fermat’s Christmas Theorem. Since the
Brahmagupta-Fibonacci identity implies that the product of two integers
that can be written as the sum of two squares is itself expressible as the sum
of two squares, by applying Fermat’s theorem to the prime factorization of
any positive integer n, we see that if all of n’s odd prime factors congruent
to 3 mod 4 occur to an even exponent, it is expressible as a sum of two
squares. The converse also holds.
These wide-angular history of sum of squares of numbers motivated the
authors to study the particular graphs named square sum graphs.
Unless mentioned otherwise, by a graph we shall mean in this paper a fi-
nite, undirected, connected graph without loops or multiple edges. Terms
not defined here are used in the sense of Harary [3]. Square sum graphs
are vertex labeled graphs with the labels from the set {0, 1, 2, . . . , p − 1}
such that the induced edge labels as the sum of the squares of the labels
of the end vertices are all distinct. Not every graph is square sum. For
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example, any complete graph Kn, where n ≥ 6 is not square sum [2]. We
are interested to study different classes of graphs, which are square sum. In
this paper, we shall show that trees, unicyclic graphs, mCn, m ≥ 1, cycle
with a chord, the graph obtained by joining two copies of cycles Cn by a
path Pk and the graph defined by path union of k copies of Cn, when the
path Pn ∼= P2 are square sum.

2. Square sum graphs

Acharya and Germina defined a square sum labeling of a (p, q)-graph G as
follows [1, 2].

Definition 2.1. A (p, q)-graph G is said to be square sum, if there exists
a bijection f : V (G) → {0, 1, 2, . . . , p − 1} such that the induced function
f∗ : E(G)→ N is given by f∗(uv) = (f(u))2+(f(v))2, for every uv ∈ E(G)
is injective.

Some square sum graphs are depicted in Figure 1.

Theorem 2.2. Pn is square sum for every n.

Figure 1 : Example of square sum graphs

Marisol Martínez
fig1
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Proof. Let V (Pn) = {u1, u2, u3, . . . , un}. Define a function f : V (Pn)→
{0, 1, 2, . . . , n − 1} by f(ui) = i− 1; 1 ≤ i ≤ n. Clearly, the edge labels of
Pn are distinct as it form a strictly increasing sequence of odd numbers. 2

Theorem 2.3. Trees are square sum.

Proof. Let v0,0 be a vertex with the maximum degree in a tree T.
Choose v0,0 as the root vertex. Let k denote the height of the tree T.
Let n1 be the number of vertices adjacent to v0,0 and let these vertices be
denoted by v1,1, v1,2, . . . , v1,n1 . These vertices are at a distance 1 from the
root vertex and are taken as the first level vertices. Let n2 be the number
of vertices adjacent to first level vertices. Denote the vertices adjacent to
v1,1, v1,2, . . . , v1,n1 by v2,1, v2,2, . . . , v2,n2 in such a manner that the vertices
adjacent to v1,i are labeled first in an increasing order when compared to
that of v1,j , where 1 ≤ i < j ≤ n1. These vertices are at a distance 2 from
the root vertex and are taken as the second level vertices. Proceeding like
this, let nk be the number of vertices adjacent to the vertices of (k − 1)th
level. The vertices in kth level are denoted by vk,1, vk,2, . . . , vk,nk . Thus we

have |V (T )| =
kX
i=1

ni + 1. Define f : V (T ) → {0, 1, . . . ,
kX
i=1

ni} as follows.

f(v0,0) = 0
f(v1,i) = f(v0,0) + i; 1 ≤ i ≤ n1
f(v2,i) = f(v0,0) + (n1 + i); 1 ≤ i ≤ n2
f(v3,i) = f(v0,0) + (n1 + n2 + i); 1 ≤ i ≤ n3
.
.
f(vk,i) = f(v0,0) + (n1 + n2 + . . .+ nk−1 + i); 1 ≤ i ≤ nk.
Clearly f is injective. Let e1, e2 ∈ E(T ) be any two arbitrary edges
of T. If e1 and e2 are two incident edges, then f∗(e1) 6= f∗(e2). Let
e1 = u1u2 and e2 = u3u4 be the edges such that e1 and e2 have no com-
mon vertex. Without loss of generality, assume that f(u1) is least among
{f(u1), f(u2), f(u3), f(u4)}. Since T is a tree, at least one of the vertices
u3, u4 is not adjacent to u1. If u4 is not adjacent to u1 then f(u4) > f(u2)
and if u3 is not adjacent to u1 then f(u3) > f(u2). Hence f

∗(e1) 6= f∗(e2),
showing that T is square sum. 2

Theorem 2.4. Forests are square sum.
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Proof. Let F=
k[
i=1

Ti be a forest, where each Ti is a tree. Let |V (Ti)| =

ni; 1 ≤ i ≤ k, so that T1 ∪ T2 ∪ . . . ∪ Tk is of order p =
kX
i=1

ni.

Define f : V (
k[
i=1

Ti) → {0, 1, . . . , p − 1} as follows. Let v be a vertex

with maximum degree in tree T1. Choose v as the root vertex. Visit all the
vertices of T1 using BFS algorithm and label the vertices with the consecu-
tive numbers 0, 1, 2, 3, . . . , n1 − 1 in ascending order, in the order in which
they are visited in a one to one manner. By Theorem 2.3, T1 is square sum.
Then label the vertices of T2 as follows. Let u be a vertex with maximum
degree in tree T2. Choose u as the root vertex. Visit the vertices of T2
using BFS algorithm and label the vertices with the consecutive numbers
n1, n1 +1, n1 +2, . . . , n1 + n2 − 1 in ascending order, in the order in which
they are visited in a one to one manner. Clearly T1 ∪ T2 is square sum.
Now label the vertices of T3 in a similar way applying BFS algorithm, by
choosing maximum degree vertex as the root vertex, with label n1+n2. Pro-
ceeding in this way, we label the vertices of Tk as follows. Let w be a vertex
with maximum degree in Tk. Choose w as the root vertex. Visit the vertices
of Tk using BFS algorithm and label the vertices with consecutive numbers
(n1+n2+. . .+nk−1), (n1+n2+. . .+nk−1+1), . . . , (n1+n2+. . .+nk−1+nk−1)
in ascending order, in the order in which they are visited. Clearly, the in-
duced edge label of Ti; 1 ≤ i ≤ k, are in strictly increasing order. Hence
k[
i=1

Ti is square sum. 2

Theorem 2.5. Cycles are square sum.

Proof. Let Cn be a cycle of length n and letCn : u1, u2, . . . , un, u1.
E(Cn) = {uiui+1; 1 ≤ i ≤ n− 1} ∪ unu1.

Define f : V (Cn)→ {0, 1, 2, . . . , n− 1} by

f(u1) = 0 and

when n is odd

f(ui) =

⎧⎨⎩ 2i− 3 if 2 ≤ i ≤ dn
2
e,

2(n+ 1− i) if dn
2
e < i ≤ n.

when n is even
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f(ui) =

⎧⎨⎩ 2i− 3 if 2 ≤ i ≤ n

2
+ 1,

2(n+ 1− i) if
n

2
+ 1 < i ≤ n.

Clearly f is injective. There are three classes of edges.

1) Edges connecting consecutive distinct odd numbers,

{uiui+1; 2 ≤ i ≤ bn
2
c}.

2) Edges connecting consecutive distinct even numbers,

{uiui+1; b
n

2
+ 1c < i ≤ n− 1} ∪ unu1 and

3) Edges u1u2 and ubn
2
+1cubn

2
+2c, having end vertices with the labels

in which one of them is even and the other is odd, which receive odd edge
labels.

Clearly the labelings of class 1 and class 2 are distinct. In class
3, f∗(u1u2) = 1 and f∗(ubn

2
+1cubn

2
+2c) is strictly greater than 1. Hence

f∗(u1u2) 6= f∗(ubn
2
+1cubn

2
+2c). Since the labels of the edges connecting

consecutive even numbers and consecutive odd numbers are distinct, the
edge labelings of class 1 edges are distinct from edge labeling of class 2
edges. Since the edge labelings of class 3 edges are distinct odd numbers,
they are distinct from edge labeling of class 1 edges and class 2 edges of
distinct even numbers. Hence all the induced edge labels are distinct and
f is square sum labeling of Cn. 2

Theorem 2.6. Unicyclic graphs are square sum.

Proof. Let G be a unicyclic graph with unique cycle
Cn : u1, u2, u3, . . . , un, u1 and define the function
f : V (G)→ {0, 1, 2, . . . , n− 1} as follows.

Case (1): G ∼= Cn. Choose an arbitrary vertex say u1 of Cn. Starting
from u1, visit all the vertices of G using BFS algorithm and label the ver-
tices ui; 1 ≤ i ≤ n in the order in which they are visited. By Theorem 2.5,
f is a square sum labeling of G.

Case (2): Let G 6∼= Cn. We prove the theorem in following two steps.
Choose any vertex u1 of Cn such that deg(u1) ≥ 3.
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Subcase (i): n is even. Starting from u1, visit all the vertices of G
using BFS algorithm subject to the following restrictions. First visit all
the neighbors of u1 not on the cycle so that un and u2 are visited consecu-
tively. Without loss of generality, assume that un is visited first. In general,
if 0 ≤ i ≤ n

2 while we visit the neighbors of un−i, first visit the neighbors
that are not on cycle and for neighbors of ui+2, first visit its neighbor on the
cycle. Label the vertices of G with the consecutive numbers 0, 1, 2, . . . , n−1
in the order in which we visit them. Clearly f(V ) = {0, 1, 2, . . . , n − 1}.
Since G is a unicyclic graph, BFS algorithm gives exactly one back edge

ukuk+1, where k =
n

2
. Now let e1 and e2 be any two edges of G. If either

e1 and e2 are adjacent or e1, e2 6= ukuk+1, then obviously f
∗(e1) 6= f∗(e2).

Suppose e1 = ukuk+1. e1 and e2 are non-adjacent and e2 = v1v2 with
f(v1) < f(v2). If f(v2) < f(uk) then f(v1) < f(v2) < f(uk) < f(uk+1).
If f(uk) < f(v2) < f(uk+1), then f(v1) < f(uk+2) < f(uk) < f(v2) <
f(uk+1). if f(uk), f(uk+1) < f(v2) then f(v1) > f(uk) so that f(uk) <
f(v1) < f(uk+1) < f(v2) or f(uk) < f(uk+1) < f(v1) < f(v2). In all cases
we have f∗(e1) 6= f∗(e2).

Subcase(ii): n is odd. Starting from u1, visit all the neighbors of u1,
using BFS algorithm, such that we first visit un, then the neighbors of
u1 that are not on the cycle and then u2. Next visit un−1 and then the
other neighbors of un so that u2 and un−1 are visited consecutively. Now
proceeding as in Subcase (i) we obtain a square sum labeling of G. 2

Theorem 2.7. For integers m and n, the graph mCn is square sum for all
m ≥ 1 and for all n ≥ 3.

Proof. Let G denote m copies of Cn. When m = 1 by Theorem 2.5, Cn

is square sum. Let m ≥ 2.

Let V (mCn) = {ui,j ; 1 ≤ i ≤ m, 1 ≤ j ≤ n} and
E(mCn) = {ui,jui,j+1; 1 ≤ i ≤ m; 1 ≤ j ≤ n− 1 ∪ ui,nui,1; 1 ≤ i ≤ m}

Define f : V (mCn)→ {0, 1, . . . ,mn− 1} as follows.
f(ui,1) = n(i− 1); 1 ≤ i ≤ m
and when n is odd

f(ui,j) =

⎧⎨⎩ f(ui,1) + 2j − 3 if 1 ≤ i ≤ m; 2 ≤ j ≤ dn
2
e,

f(ui,1) + 2(n+ 1− j) if 1 ≤ i ≤ m; dn
2
e < j ≤ n.
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when n is even

f(ui,j) =

⎧⎨⎩ f(ui,1) + 2j − 3 if 1 ≤ i ≤ m; 2 ≤ j ≤ n

2
+ 1,

f(ui,1) + 2(n+ 1− j) if 1 ≤ i ≤ m;
n

2
+ 1 < j ≤ n.

Clearly f is injective. The induced edge labels of mCn; m ≥ 1 are
strictly increasing and all the edge labels are distinct. Hence mCn is square
sum for all m ≥ 1.

2

Definition 2.8. Path union of graphs: Let graphs G1, G2,G3, . . . , Gn, n ≥
2 be all copies of a fixed graph G. Adding an edge between Gi to Gi + 1
for i = 1, 2, . . . , n− 1 is called path union of G.

Theorem 2.9. The graph obtained by joining two copies of cycle Cn by a
path Pk is square sum.

Proof. Let Cni ; 1 ≤ i ≤ 2 be two copies of cycle Cn. Let G be
the graph obtained by joining two copies of cycle Cn with path Pk. Let
ui; 1 ≤ i ≤ n be the vertices of cn1 and vi; 1 ≤ i ≤ n be the vertices of Cn2 .
Let wi; 1 ≤ i ≤ k be the vertices of path Pk with u1 = w1 and v1 = wk. Here
we note that |V (G)| = 2n+k−2. Define f : V (G)→ {0, 1, 2, . . . , 2n+k−3}
as follows. Start from u1 of Cn1 visit all the vertices of Cn1 , using BFS
algorithm and label the vertices ui; 1 ≤ i ≤ n as n− 1, n− 2, . . . , 2, 1, 0 in
descending order, the order in which they are visited. By Theorem 2.5, f
is a square sum labeling of Cn1 . Define f : V (Pk) → {n − 1, n, n + 1, n +
2 . . . , (n+ k− 3), (n+ k− 2)} by f(wi) = f(u1) + i− 1; 1 ≤ i ≤ k. Clearly
the edge labels of path Pk are strictly increasing sequence of odd numbers,
and hence they are distinct. Starting from wk = v1, of Cn2 visit all the
vertices of Cn2 using BFS algorithm, and label the vertices vi; 1 ≤ i ≤ n
as (n+ k − 2), (n+ k − 1), (n+ k), . . . , (2n+ k − 3), in the order in which
they are visited. The edge labeling of path Pk are strictly greater than edge
labels of Cn1 . Also edge labels of Cn2 are strictly greater than that of Pk.
Hence induced edge labels of Cni ; 1 ≤ i ≤ 2 with path Pk are distinct and
f is a square sum labeling of G. 2

Theorem 2.10. The path union of k copies of Cn, where k ≥ 1 when the
path Pn ∼= P2 are square sum.

Proof. Let Cni ; 1 ≤ i ≤ k be the k copies of Cn. Let G be a graph
obtained by joining k copies of Cn by path P2. Here |V (G)| = kn. Let
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Cn1 : u1, u2, . . . , un, u1 and Cn2 : v1, v2, . . . , vn, v1 be the first two copies of
Cn, where u1v1 be the path P2 joining Cn1 and Cn2 . Define f : V (G) →
{0, 1, 2, . . . , kn − 1} as follows. Start from vertex u1 of Cn1 , visit all the
vertices of Cn1 using BFS algorithm and label the vertices ui; 1 ≤ i ≤ n
of Cn1 as n− 1, n− 2, . . . , 1, 0 in descending order, the order in which they
are visited. By Theorem 2.5, this labeling is a square sum labeling of Cn1 .
Starting from v1 visit all the vertices of Cn2 using BFS algorithm and label
the vertices of Cn2 as n, n+ 1, . . . , 2n− 1 in ascending order, the order in
which they are visited. Clearly label of edge u1v1, joining Cn1 and Cn2 is
strictly greater than the edge labels of Cn1 and edge label of Cn2 is strictly
greater than that of u1v1. Hence edge labels of Cn1 , Cn2 and path P2 are
distinct. Label the end vertex of path P2 joining Cn2 and Cn3 by 2n−1 and
2n respectively. Start from vertex with label 2n on Cn3 , visit all the vertices
using BFS algorithm and label the vertices in ascending order. Continue
this process and label the vertices of Cn4 , . . . , Cnk respectively using BFS
algorithm and lastly, label the end vertices of path P2 joining Cnk−1 and
Cnk by (k − 1)n− 1 and (k − 1)n respectively. Clearly all the edge labels
of path are increasing sequence of odd numbers and are distinct from the
edge labels of cycles. Hence f is square sum labeling of G. 2

Theorem 2.11. Finite union
k[
i=1

Ci of cycles Ci are square sum.

Proof. Let
k[
i=1

Ci be finite union of cycles. Let C1 : u1, u2, . . . , un1 , u1

be a cycle of length n1, C2 : v1, v2, . . . , vn2 , v1 be a cycle of length n2,
and Ck : w1, w2, . . . , wnk , w1 be a cycle of length nk. Start from vertex u1
of C1, visit all the vertices of C1 using BFS algorithm, label the vertices
ui; 1 ≤ i ≤ n1 of C1 as 0, 1, 2, . . . , n1 − 1, in the order in which they
are visited. By Theorem 2.5, f is square sum labeling of C1. Choose an
arbitrary vertex v1 of C2. Start from vertex v1 of C2, visit all the vertices
of C2 using BFS algorithm, label the vertices vi; 1 ≤ i ≤ n2 of C2 as
n1, n1 + 1, . . . , n1 + n2 − 1, in the order in which they are visited. Clearly
C1 ∪ C2 is square sum. Now label the vertices of C3 in a similar way.
Proceeding in this way we label the vertices of Ck as follows. Choose an
arbitrary vertex w1 of Ck. Start from the vertex w1 of Ck, visit all the
vertices of Ck using BFS algorithm, and label the vertices wi; 1 ≤ i ≤ nk
of Ck as (n1+n2+ . . .+nk−1), (n1+n2+ . . .+nk−1+1), . . . , (n1+n2+ . . .+
nk−1 + nk − 1), in the order in which they are visited. Since the induced
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edge labels of
k[
i=1

Ci; 1 ≤ i ≤ k are strictly increasing, all the edge labels

are distinct. Hence
k[
i=1

Ci; 1 ≤ i ≤ k is square sum. 2

Theorem 2.12. Cycle with a chord is square sum.

Proof. By theorem 2.5, Cn : u1, u2, . . . , un, u1 is square sum. Join the
vertices u2 and un by a chord. The edge label of u2un is clearly distinct
from all the induced edge labels of Cn. Hence cycle with a chord is square
sum. 2

Before concluding this section let us point out an interesting problem
which will have a strong link with number theory. Consider an edge labeled
graph with distinct labels for the edges. It would be worthwhile to find out
suitable labeling for the vertices such that sum of the squares of the labels
on the end vertices become the given edge labeling. This in turn is a
reformulation of the Problem 1.1.
Scope for further investigation

One may define a particular case of square sum by labeling the vertices
of the (p, q)-graph G, with {0, 1, 2, . . . , p − 1} so as to have the induced
edge labelings as distinct prime numbers. Another version of square sum
graphs can be defined as labeling the vertices of the graph G using labels
from {0, 1, 2, . . . , q− 1} so as to have the induced edge labelings as distinct
integers (prime numbers). Structural properties of graphs which admit such
labelings seems to be interesting for further investigation.
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