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Abstract

For a given nonnegative n × n matrix A consider the following
quantity

s(Am) :=
mini,j(A

m)ij
maxi,j(Am)ij

, m = 1, 2, . . .

as long as the denominator is positive. It is simply the ratio between
the smallest and the largest entries of Am. We call s(Am) the in-
verse spread of Am which is interpreted as a measure of the maximum
variation among the entries of Am in the multiplicative and recipro-
cal sense. Smaller s(Am) means a larger variation for Am. Clearly
0 ≤ s(Am) ≤ 1 for all m = 1, 2, . . . We study the asymptotic behavior
of s(Am), that is, the behavior of s(Am) as m→∞. The study arises
from evolutionary biology.
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1. Introduction

Probabilistic models of protein evolution have been developed and refined
over time to account for the biological processes involved in amino acid
substitution, i.e., mutational biases in the DNA, translation of the DNA
into protein according to the genetic code, and selective constraints on
the protein [10, 11]. These models have been used primarily to calculate
distances between sequences for use in phylogenetic reconstruction.

Here we use graph theory to focus on the initial stages of the substi-
tution process, and ask if there are biases toward particular amino acid
identities in the initial steps of protein evolution, for example at the ad-
vent of a new protein(s) following a gene duplication, recombination, or
hybridization event. Rather than seeking the shortest distance among a set
of given sequences through parameterized substitution models, we modeled
the problem with graphs where the vertices are either DNA codons in G1 or
amino acids in G2 through G4, with the associated adjacency matrices M1,
M2, M3 and M4 respectively. G1 and G2 model evolutionary transitions in
terms of the mutational distance between two codon states, or two amino
acid states respectively. The remaining two graphs consider amino acid
transitions in terms of their likelihood as determined through comparisons
of real proteins [6].

The vertices of G1 are the possible 3 letter combinations of nucleotides
(A, T,C,G) that comprise the genetic code. In the Genetic Code, each
three letter combination, or codon, codes for an amino acid, the building
block of proteins, with a typical protein consisting in 200-800 amino acids.
The edges of G1 correspond to the hamming distance between any two
codons (i.e. {u, v} is an edge in G1 if the codons corresponding to u and
v differ in exactly one nucleotide). The entries in the adjacency matrix
are either a 1 or a 0. A one indicates that the codons are only a single
letter change apart; only a single mutational event separates the states and
no intermediate must be traversed to arrive at the new identity. A zero
indicates that more than a single nucleotide difference separates the codons,
and a potentially maladaptive intermediate codon must be traversed to
evolve from one codon to the other. In this way, G1 models transitions at
the level of DNA evolution, how does the fact that, from a given codon
state, only nine of the 63 non-identical codons can be reached in a single
mutational step affect evolutionary outcomes?

G2 models evolutionary transitions at the level of amino acid evolution
by incorporating the degeneracy in the genetic code into the graph - the
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64 codons code for only twenty different amino acids. Each amino acid is
coded by from one to six different codons, with the difference affecting the
number of single-step pathways, and therefore the likelihood of evolution,
between two amino acid states. The vertices of G2 are the 20 amino acids,
with the edges containing the number of single step pathways between two
amino acids when degeneracy in the code is considered. For example, there
are two ways to code the amino acid Histidine (His), CAT and CAC, and
two ways to code Glutamine (Gln), CAA and CAG, thus there are four
single step paths between His and Gln, and hence there are four edges
between the vertices His and Gln. The following is the adjacency matrix
M2 associated with G2:

M2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A R N D C Q E G H I L K M F P S T W Y V
ALA(A) 0 0 0 2 0 0 2 4 0 0 0 0 0 0 4 4 4 0 0 4
ARG(R) 0 0 0 0 2 2 0 6 2 1 4 2 1 0 4 6 2 2 0 0
ASN(N) 0 0 0 2 0 0 0 0 2 2 0 4 0 0 0 2 2 0 2 0
ASP(D) 2 0 2 0 0 0 4 2 2 0 0 0 0 0 0 0 0 0 2 2
CYS(C) 0 2 0 0 0 0 0 2 0 0 0 0 0 2 0 4 0 2 2 0
GLN(Q) 0 2 0 0 0 0 2 0 4 0 2 2 0 0 2 0 0 0 0 0
GLU(E) 2 0 0 4 0 2 0 2 0 0 0 2 0 0 0 0 0 0 0 2
GLY(G) 4 6 0 2 2 0 2 0 0 0 0 0 0 0 0 2 0 1 0 4
HIS(H) 0 2 2 2 0 4 0 0 0 0 2 0 0 0 2 0 0 0 2 0
ILE(I) 0 1 2 0 0 0 0 0 0 0 4 1 3 2 0 2 3 0 0 3
LEU(L) 0 4 0 0 0 2 0 0 2 4 0 0 2 6 4 2 0 1 0 6
LYS(K) 0 2 4 0 0 2 2 0 0 1 0 0 1 0 0 0 2 0 0 0
MET(M) 0 1 0 0 0 0 0 0 0 3 2 1 0 0 0 0 1 0 0 1
PHE(F) 0 0 0 0 2 0 0 0 0 2 6 0 0 0 0 2 0 0 2 2
PRO(P) 4 4 0 0 0 2 0 0 2 0 4 0 0 0 0 4 4 0 0 0
SER(S) 4 6 2 0 4 0 0 2 0 2 2 0 0 2 4 0 6 1 2 0
THR(T) 4 2 2 0 0 0 0 0 0 3 0 2 1 0 4 6 0 0 0 0
TRP(W) 0 2 0 0 2 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0
TYR(Y) 0 0 2 2 2 0 0 0 2 0 0 0 0 2 0 2 0 0 0 0
VAL(V) 4 0 0 2 0 0 2 4 0 3 6 0 1 2 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The vertices of G3 and G4 also correspond to the twenty amino acids,

however the edges are different. These consist of the likelihood of a transi-
tion between amino acid states as determined through comparisons of real
proteins (multiplied by 105) [6]. Amino acids with similar biochemistry are
more likely to substitute for one another than amino acids with very differ-
ent biochemistry, as the latter type of transition is more likely to disrupt
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protein function. G3 considers transitions under a model of purifying selec-
tion, in which most mutations, ie. evolutionary transitions, are deleterious,
such that the most likely evolutionary transition is a transition to the same
amino acid state. However, in rare instances, positive selection, transitions
to different amino acid states are favored. This condition is modeled by
the graph G4, in which transitions to the same amino acid are not allowed
(i.e. deleting all the loops in G3 to create G4 or placing zeros on the main
diagonal of M3 to obtain M4). The matrices M1, M2, M3, and M4 are on
the following URL:
http : //academic.udayton.edu/AtifAbueida/Positive Matrix.htm

By raising the matrix to integer powers, m, the codon or amino acid
evolves, such that the (i, j) entry in the matrix, aij , represents the number

ofm-step pathways between the codon states in the ith row and jth column
in question. By evolving the matrix, the following questions are answered:

1. Are evolutionary pathways unevenly distributed, such that there are
more pathways to some codon identities than others, and

2. If so, how long does the uneven distribution of pathways persist?

Figure 1. Min/Max vs. nucleotide matrix powers

Results from G1 show that the number of pathways to different codon
states are unevenly distributed early in the evolution of the matrix ; the
ratio of the smallest entry to the largest entry in the matrix (Min/Max, or
Inverse spread) is less than 1.0. After ten generations of evolution this signal
disappears; over time, the accumulation of alternative pathways between
codon states results in every codon state being equally likely (redMin/Max
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= 1.0. After ten generations of evolution this signal disappears; over time,
the accumulation of alternative pathways between codon states results in
every codon state being equally likely (Fig. 1).

G2 reveals that degeneracy in the genetic code impacts the evolutionary
process. G2 reaches an equilibrium min/max value in fewer generations
than the nucleotide matrix (Fig. 2). The equilibrium value of 0.0469 is
smaller than the (non-zero) min/max in the initial (A-zero) matrix (0.167).

Figure 2. Min/Max vs. amino acid coding matrix powers

G3 and G4 show different behavior than G2, expected given the funda-
mental role of functional considerations in evolution. After 2000 genera-
tions, the purifying selection matrix G3 arrives at a min/max approaching
0.1145. This value is larger than the initial, non-zero min/max of 0.00001
in the (A-zero) matrix.
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Figure 3. Min/Max vs. Purifying selection matrix powers

After 10 generations, the functional adjacency matrix, M4, arrives at
a min/max equilibrium of 0.00496 (see figure), larger than the (non-zero)
min/max value in the (A-zero) matrix. This value is larger than the (non-
zero) min/max in the initial (A-zero) matrix (.00016).

Figure 4. Min/Max vs. Positive selection matrix powers

The above figures all point to a possible conclusion that the inverse
spread of Am settles at some constant, where A is a nonnegative n × n
matrix, for example, A = M1,M2, M3 and M4 are nonnegative matrices.
It turns out it is true under certain circumstances. We discuss the inverse
spread phenomenon in more mathematical form and we show when it con-
verges. The matrices M1, M2, M3 and M4 are indeed primitive matrices
which will be discussed in a later section.
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2. Preliminaries on nonnegative matrices

Let Nn denote the collection all nonnegative n × n matrices. See [1, 5]
for preliminaries for nonnegative matrices. To have a well defined s(Am),
Am ∈ Nn must have at least one nonzero entry. But this can be violated
by the so called nilpotent matrices. A nilpotent n×n matrix A is a matrix
such that Ak = 0 for some positive integer k. Indeed the smallest such k is
no greater than n. For example

N =

Ã
0 1
0 0

!

is a nilpotent matrix since N2 = 0. Clearly s(N2) is undefined. So we
need to restrict our study to nonnegative non-nilpotent matrices. It is
known that a (complex or real) square matrix A is nilpotent if and only
if all eigenvalues of A are zeros. But this fact may not offer much help in
practice to determine whether A ∈ Nn is nilpotent or not because of the
presence of numerical error, especially when dealing with large matrices, for
example, M1 is 64× 64. Hearon [4] obtained the following characterization
of nonnegative nilpotent matrices. The third condition makes a good check
on whether A ∈ Nn is nilpotent. An algorithm to find cycles in directed
graph has been developed in [9] which is useful to check the last condition.

Theorem 3. (Hearon) Let A ∈ Nn. Then the following are equivalent.

1. A is nilpotent.

2. A is permutationally similar to a triangular matrix with zero diagonal
entries.

3. A and each of its principal submatrices contain a zero row and a zero
column.

4. the graph G(A) of A contains no cycles.

The graph G(A) of A ∈ Nn is constructed in the following fashion (also
works for any n× n matrix): we begin with n points or vertices v1, . . . , vn.
If aij 6= 0 we draw a directed line (arrow) from j to i. In particular if i = j,
we draw a loop on vj . A cycle of length k is obtained from a path of length
k by adding the arrow connecting their terminal vertex to the initial vertex.
For example, v2 → v5 → v4 → v2 is a cycle of length 3. We regard a loop
vi → vi as a cycle of length 1.
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For our application, we can check An = 0 to see whether A ∈ Nn is
nilpotent or not, provided that the size of A is not too large.

Another practical criterion for nilpotence of A ∈ Nn is trA
k = 0 for

all k = 1, . . . , n [5, p.44], where trAk denotes the trace of Ak, i.e., the
sum of the diagonal entries of Ak, especially the entries of our matrices are
nonnegative integers.

To carry our study further we need more concepts for nonnegative ma-
trices.

A matrix A ∈ Nn is said to be reducible if there exists a permutation
matrix P such that

PAPT =

Ã
B C
0 D

!
where B and D are square matrices but not necessarily of the same size.
Otherwise P is said to be irreducible. The following result contains some
characterizations of irreducible nonnegative matrices [5, p.362].

Theorem 5. Let A ∈ Nn. Then the following are equivalent.

1. A is irreducible.

2. (I +A)n−1 > 0.

3. the graph G(A) is strongly connected.

The graph G(A) is strongly connected if between every pair of distinct
vertices vi, vj , there is a directed path that begins at vi and ends at vj .
Condition 2 in Theorem 5 is useful to have computer implementation if the
entries of A are nonnegative integers like M1,M2,M3.

Notice that if A is reducible and non-nilpotent, then

PAPT =

Ã
B C
0 D

!
where B and D are square matrices and thus

PAmPT =

Ã
Bm ∗
0 Dm

!

Since P is a permutation matrix, the entries of A are those of PAmPT . So
it is clear now

s(Am) = 0, m = 1, 2, . . .

We thus turn our attention to the irreducible nonnegative matrices.



Inverse spread limit of a nonnegative matrix 117

3. The limit of inverse spread for irreducible nonnegative ma-
trices

An irreducible nonnegative matrix A is non-nilpotent by Theorem 3. By
Perron-Frobenius theory [1, 3, 5], a nonnegative irreducible matrix A has
the spectral radius, r(A), as a simple eigenvalue. The spectral radius of A is
the maximal large eigenvalue modulus. However it is possible for A to have
some eigenvalue λ other than r(A) such that the modulus of λ is also r(A).
Suppose A has k eigenvalues of maximal modulus r(A), including r(A).
When k = 1, A is called primitive; when k > 1, A is called imprimitive
of index k. For each imprimitive matrix A with index k, there exists a
permutation matrix P such that

PAPT =

⎛⎜⎜⎜⎜⎜⎜⎝
0 B1

0 B2
. . .

0 Bk−1
Bk 0

⎞⎟⎟⎟⎟⎟⎟⎠
where the diagonal zero blocks are square. Moreover the diagonal blocks
in PAkPT = diag (A1, . . . , Ak) are all primitive and have one and the same
maximal eigenvalue. Indeed one can see

PA2PT =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 B1B2
0 0 B2B3

. . .

0 Bk−2Bk−1
Bk−1Bk 0 0

BkB1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
and so on. So PAmPT would always have some zero entry for any positive
integer m. Thus s(Am) = 0 for all m = 1, 2, . . . if A is imprimitive of index
k > 1.

So we only need to consider primitive A. It is known that [5, p.516]
A ∈ Nn is primitive if and only if A

p > 0 for some positive integer p and
one may pick p = n2 − 2n+ 2 [5, p.520].

From [3, p.81]

lim
m→∞

Am

rm
=

C(r)

ψ0(r)
,
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where ψ(λ) is the minimal polynomial of A, ψ0(λ) its derivative, C(λ) :=
(λIn−A)−1ψ(λ) is the reduced adjoint matrix [2, p.90], and r := r(A). So

s(Am) = lim
m→∞

mini,j(A
m)ij

maxi,j(Am)ij

= lim
m→∞

mini,j(A
m/rm)ij

maxi,j(Am/rm)ij

=
mini,j limm→∞(Am/rm)ij
maxi,j limm→∞(Am/rm)ij

=
mini,j(C(r)/ψ

0(r))ij
maxi,j(C(r)/ψ0(r))ij

=
mini,j(C(r))ij
maxi,j(C(r))ij

To summarize:

Theorem 4. Let A ∈ Nn be a non-nilpotent nonnegative matrix.

1. If A is primitive, then c(A) := lim
m→∞

s(Am) exists and 0 < c(A) ≤ 1.
Indeed

c(A) =
mini,j(C(r))ij
maxi,j(C(r))ij

,

where C(λ) is the reduced adjoint matrix C(λ) = (λIn − A)−1ψ(λ)
and ψ(λ) is the minimal characteristic polynomial of A.

2. Otherwise c(A) := lim
m→∞

s(Am) = 0.

There is another way to compute c(A) for a primitive A ∈ Nn. Since
[5, p.516]

lim
m→∞

Am/rm = L,(3.1)

where L = xyT , Ax = r(A)x and AT y = r(A)y, x > 0, y > 0 and xT y = 1.
So

c(A) =
min1≤i,j≤n(xyT )ij
max1≤i,j≤n(xyT )ij

=
min1≤i,j≤n xiyj
max1≤i,j≤n xiyj

(3.2)

= min
1≤i,j≤n

xi
xj

min
1≤i,j≤n

yi
yj
.

Thus finding c(A) is reduced to the minimum ratios of the components
in the Perron vectors of A and AT without doing the normalization xT y = 1
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process. In addition, if A is a symmetric matrix, then x is also a Perron
vector of AT and thus

c(A) =

"
min

1≤i,j≤n
xi
xj

#2
.

Example 3. Using MATLAB the spectral radius and the Perron vector x
of M2 are respectively r(M2) = 23.3522 and

x = (0.2744, 0.3686, 0.1265, 0.1148, 0.1530, 0.1284, 0.1061, 0.2533, 0.1371,
0.2187, 0.3311, 0.1115, 0.0997, 0.1802, 0.3075, 0.4013, 0.2871, 0.0869, 0.0953,
0.2422)T

Since M2 is symmetric, that is, M
T
2 = M2, y = x and thus c(M2) =

(minxi/maxxj)
2 = (0.0869/0.4013)2 ≈ 0.0469 which matches Figure 2.

The limit in (3.1) may not exist if A is imprimitive, for example, when

A =

Ã
0 1
1 0

!
, A2k = I2 and A2k+1 = A for all k = 1, 2, ...

4. The largest possible case c(A) = 1

When will the upper bound 1 for c(A) be attained? A simple example is

Jn =

⎛⎜⎜⎜⎝
1 1 · · · 1
1 1 · · · 1
· · · · · · · · · · · ·
1 1 · · · 1

⎞⎟⎟⎟⎠ ∈ Nn,

that is, a matrix of all ones, since Jmn = nm−1Jn. Notice that the row sum
and column sum of Jn are identical. The following theorem covers this very
special example.

Theorem 4. Let A ∈ Nn. Then c(A) = 1 if and only if A is primitive and
the row sums and column sums of A are all identical.

Proof: Suppose A is primitive and the row sums and column sums of A
are identical to ξ. In other words, A is a positive multiple of a doubly
stochastic D and primitive, say A = ξD. A doubly stochastic matrix is a
square nonnegative matrices whose column sums and row sums are all 1.
It is known that r(D) = 1 and thus r(A) = ξ. The vector e = (1, . . . , 1)T is
a Perron vector for both A and AT . In other words, x = y = e, and hence
c(A) = 1 by (??).
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On the other hand, if A ∈ Nn is primitive with c(A) = 1, then by
(3.1) one concludes immediately that x and y are multiples of e and thus
Ae = AT e = ξe for some positive constant ξ. In other words, the row sums
and column sums of A are all identical.

Example 5. The matrix A = Jn − In ∈ Nn, n ≥ 3, is primitive since
A2 = J2n− 2Jn+ In = (n− 2)Jn+ In > 0. So A is primitive. Clearly A has
identical row sums and column sums, namely, n− 1.

5. Biological Interpretation

Our results show bias (inverse spread < 1.0) in amino acid states early in
an evolutionary process, resulting from differences in the number of evolu-
tionary pathways leading to different amino acid states. These biases come
to an equilibrium rapidly, except with respect to purifying selection. The
inability to achieve certain amino acid states in the first few generations
predisposes evolutionary trajectories, and is particularly important as the
first generations following a significant evolutionary event, for example a
gene duplication or species hybridization event, are the most significant to
evolutionary outcomes [7, 8].

The inverse spread of theM1 matrix rapidly reaches 1.0, all codon states
being equally likely after a few generations. However, the genetic code is
degenerate, as modeled inG2, resulting in more pathways to multiply-coded
that singly coded amino acids. Over time (interations) the initial inverse
spread in theM2 A-zero matrix is reduced four-fold, revealing the surprising
result that degeneracy exacerbates the problem of intermediates - as the
inverse spread decreases the relative number of pathways available to reach
certain amino acid identities decreases, as does the relative likelihood that
a path can be found that does not contain a maladaptive intermediate.

This contrasts with the results obtained when selection is considered,
using transition likelihood’s obtained from real proteins under purifying se-
lection (G3) and positive selection (G4). Each of these modes of selection
reduces the initial bias in codon states in their respective A-zero matri-
ces, which has the paradoxical effect of increasing the likelihood of arrival
of functionally unfavorable states over the course of evolution, mollifying
the problem of intermediates. Under purifying selection equilibrium is not
arrived at until 2000 generations have passed; in contrast to the other anal-
ysis, the effects of purifying selection on amino acid states persist over long
periods of time.



Inverse spread limit of a nonnegative matrix 121

The M3 and M4 matrices model general cases of evolution based on
observed frequencies of amino acid transitions. These values are not fixed,
but vary from protein to protein, such that other cases are of interest.

The case c(A) = 0 is of interest. In a given protein it is possible, even
likely, that some transitions are not viable due to a specific constraint on
the function of that amino acid in the protein. This results in a zero entry
for that transition in the matrix. Zeros tend to propagate in a matrix over
time, constraint in evolutionary pathways begets constraint, potentially
resulting in the c(A) = 0 case, in which no evolution is possible. This stasis
would be maintained until a change in the local environment in which the
protein functions, resulting in a corresponding change in protein function
and transition probabilities in the matrix, freeing the protein to evolve.

The case c(A) = 1 is also of interest. This result, obtained in our nu-
cleotide matrix, states that all codon states are equally likely. In a biologi-
cal sense, the initial bias in codon states (ie. only 8 of the 63 non-identical
codons can be reached in a single step/generation) quickly disappears. This
has the effect that functional considerations are free to shape codon iden-
tity without fighting any added pressures based in coding bias. We can
determine ahead of time whether this is the case because of Theorem 4.

In future work, we will assess the potential impact of pathway bias by
comparing amino acid transitions in real proteins sharing recent ancestors.
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