Proyecciones Journal of Mathematics Vol. 29, N° 2, pp. 101-108, August 2010. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172010000200003

JEWELL THEOREM FOR HIGHER DERIVATIONS ON C^* -ALGEBRAS

SHIRIN HEJAZIAN

MADJID MIRZAVAZIRI

and

ELAHE OMIDVAR TEHRANI

FERDOWSI UNIVERSITY, IRÁN

Received: January 2008. Accepted: June 2010

Abstract

Let \mathcal{A} be an algebra. A sequence $\{d_n\}$ of linear mappings on \mathcal{A} is called a higher derivation if $d_n(ab) = \sum_{j=0}^n d_j(a)d_{n-j}(b)$ for each $a,b \in \mathcal{A}$ and each nonnegative integer n. Jewell [Pacific J. Math. **68** (1977), 91-98], showed that a higher derivation from a Banach algebra onto a semisimple Banach algebra is continuous provided that $\ker(d_0) \subseteq \ker(d_m)$, for all $m \ge 1$. In this paper, under a different approach using C^* -algebraic tools, we prove that each higher derivation $\{d_n\}$ on a C^* -algebra \mathcal{A} is automatically continuous, provided that it is normal, i. e. d_0 is the identity mapping on \mathcal{A} .

Subjclass [2000] : Primary 46L57, 46H40; Secondary 46L05, 47B47.

Keywords: Derivation, higher derivation, automatic continuity, Sakai theorem.

1. Introduction

Let \mathcal{A} be an algebra. A linear mapping $\delta: \mathcal{A} \to \mathcal{A}$ is called a derivation if it satisfies the Leibniz rule, i. e. $\delta(ab) = \delta(a)b + a\delta(b)$ for all $a, b \in \mathcal{A}$. If we define the sequence $\{d_n\}$ of linear mappings on \mathcal{A} by $d_0 = I$ and $d_n = \frac{\delta^n}{n!}$, where I is the identity mapping on \mathcal{A} , then the Leibniz rule ensures us that d_n 's satisfy the condition

$$d_n(ab) = \sum_{j=0}^n d_j(a) d_{n-j}(b)$$
 (*)

for each $a, b \in \mathcal{A}$ and each nonnegative integer n. This motivates us to consider the sequences $\{d_n\}$ of linear mappings on an algebra \mathcal{A} satisfying (*). Such a sequence is called a higher derivation. Higher derivations were introduced by Hasse and Schmidt [2], and algebraists sometimes call them Hasse-Schmidt derivations. Though, if $\delta: \mathcal{A} \to \mathcal{A}$ is a derivation then $d_n = \frac{\delta^n}{n!}$ is a higher derivation, this is not the only example of a higher derivation.

Regarding to a celebrated theorem of Sakai [11, 12], all derivations defined on a C^* -algebra are automatically continuous. Some results concerning to the theorem are discussed in [8] and [3]. Regarding to the Sakai's theorem we can deduce that the higher derivation $d_n = \frac{\delta^n}{n!}$ defined on a C^* -algebra is automatically continuous in the sense that each d_n is continuous. This poses the problem of automatic continuity of higher derivations. Many mathematicians could find some affirmative answers to the problem in special cases. Loy [7] proved that if \mathcal{A} is an (F)-algebra which is a subalgebra of a Banach algebra \mathcal{B} of power series, then every higher derivation $\{d_n\}: \mathcal{A} \to \mathcal{B}$ is automatically continuous. Jewell [5], showed that a higher derivation from a Banach algebra onto a semisimple Banach algebra is continuous provided that $\ker(d_0) \subseteq \ker(d_m)$, for all $m \ge 1$. Villena [14], proved that every higher derivation from a unital Banach algebra \mathcal{A} into \mathcal{A}/\mathcal{P} , where \mathcal{P} is a primitive ideal of \mathcal{A} with infinite codimension, is continuous. Hejazian and Shatery [4] prove the automatic continuity of higher derivations in the case of JB^* -algebras.

Here, we prove automatic continuity of higher derivations in the domain of C^* -algebras. Though, this is a consequence of the Jewell result in [5], our proof just depends on C^* -algebraic tools. Prior to that, we need some elementary facts concerning higher derivations. For the definition and elementary properties of C^* -algebras we refer the reader to [6, 9] and [10]. One can find a collection of suitable information about automatic

continuity and some applications of higher derivations in [1] and [13].

2. Preliminaries

Let \mathcal{A} be an algebra, $\mathbf{Z}_k^+ = \{0, 1, \dots, k\}$ for $k \in \mathbf{N}$ and $\mathbf{Z}^+ = \{0, 1, 2, \dots\}$. A higher derivation of order k is a sequence $\{d_n\}_{n \in \mathbf{Z}_k^+}$ of linear mappings from \mathcal{A} to \mathcal{A} such that

$$d_n(ab) = \sum_{j=0}^{n} d_j(a) d_{n-j}(b)$$

for all $a, b \in \mathcal{A}$ and $n \in \mathbf{Z}_k^+$. A sequence $\{d_n\}_{n \in \mathbf{Z}^+}$ is a higher derivation of infinite order if $\{d_n\}_{n \in \mathbf{Z}_k^+}$ is a higher derivation of order k for each $k \in \mathbf{N}$. A higher derivation $\{d_n\}$ is called normal if $d_0 = I$ (the identity mapping on \mathcal{A}). As a simple example, for a derivation $\delta : \mathcal{A} \to \mathcal{A}$ we can assume the sequence $d_0 = I$, $d_n = \frac{\delta^n}{n!}$. The Leibniz rule implies that $\{d_n\}$ is a higher derivation.

A higher derivation $\{d_n\}$ is called continuous if each d_n is continuous. It is said to be onto if d_0 is onto.

Lemma 2.1. If $\{d_n\}$ is a normal higher derivation on a unital C^* -algebra with unit ι , then $d_n(\iota) = 0$ for $n \geq 1$.

Proof. Since $\{d_n\}$ is normal, d_1 is a derivation and so $d_1(\iota) = 0$. Let $d_j(\iota) = 0$ for $1 \le j \le n - 1$. Then we have

$$d_n(\iota) = d_n(\iota.\iota) = \iota.d_n(\iota) + \sum_{j=1}^{n-1} d_j(\iota)d_{n-j}(\iota) + d_n(\iota).\iota = d_n(\iota) + d_n(\iota)$$

Hence $d_n(\iota) = 0$. \square

From now on, we assume that \mathcal{A} is a unital C^* -algebra. In fact, if \mathcal{A} has no identity, we shall consider the C^* -unitization \mathcal{A}_1 of \mathcal{A} , and define $d_n(\iota) = 0$ for each n.

Recall that if T is a linear mapping and we define T^* by $T^*(a) = T(a^*)^*$ for all $a \in \mathcal{A}$, then T^* is a linear mapping on \mathcal{A} .

Lemma 2.2. Let $\{d_n\}$ be a higher derivation on a C^* -algebra \mathcal{A} . Then $\{d_n^*\}$ is also a higher derivation on \mathcal{A} .

Proof. For each $a, b \in \mathcal{A}$ and $n \in \mathbb{Z}^+$ we have

$$d_n^*(ab) = (d_n(b^*a^*))^* = \left(\sum_{j=0}^n d_j(b^*)d_{n-j}(a^*)\right)^* = \sum_{j=0}^n d_{n-j}^*(a)d_j^*(b)$$

$$=\sum_{k=0}^{n} d_k^*(a) d_{n-k}^*(b).$$

Thus $\{d_n^*\}$ is a higher derivation. \square

It is known that the derivation $d: \mathcal{C}^1([0,1]) \to \mathcal{C}([0,1])$ defined by d(f) = f' on the dense subalgebra $\mathcal{C}^1([0,1])$ of $\mathcal{C}([0,1])$ is not continuous. So the higher derivation $\{\frac{d^n}{n!}\}$ is an example of a discontinuous densely defined normal higher derivation in the C^* -algebra $\mathcal{C}([0,1])$. In the next section, we will show that this is not the case for everywhere defined higher derivations on C^* -algebras.

3. The Result

Theorem 3.1. Let \mathcal{A} be a unital C^* -algebra. Then every normal higher derivation $\{d_n\}$ on \mathcal{A} is continuous.

Proof. For each $n \in \mathbb{Z}^+$ we can write

$$d_n(ab) = \frac{d_n^* + d_n}{2} + i\frac{id_n^* - id_n}{2}.$$

Put $d_n^1 = \frac{d_n^* + d_n}{2}$ and $d_n^2 = \frac{id_n^* - id_n}{2}$. Then d_n^1 's and d_n^2 's are *-mappings and $d_n^1(\iota) = d_n^2(\iota) = 0$ for all $n \in \mathbf{N}$. We also have

$$d_n^1(ab) = ad_n^1(b) + d_n^1(a)b + \frac{1}{2} \sum_{j=1}^{n-1} d_j(a)d_{n-j}(b) + \frac{1}{2} \sum_{j=1}^{n-1} d_j^*(a)d_{n-j}^*(b),$$

$$d_n^2(ab) = ad_n^2(b) + d_n^2(a)b - \frac{i}{2} \sum_{j=1}^{n-1} d_j(a)d_{n-j}(b) + \frac{i}{2} \sum_{j=1}^{n-1} d_j^*(a)d_{n-j}^*(b).$$

It suffices to show that d_n^1 and d_n^2 are continuous for all $n \in \mathbf{Z}^+$. At first we prove continuity of d_n^1 's by induction:

Since $d_0^1 = I$, d_0^1 is continuous. Suppose that d_j^1 is continuous for $j \le n-1$. Let a be a self-adjoint element of \mathcal{A} and φ be a state on \mathcal{A} such that $|\varphi(a)| = ||a||$. We may assume that $\varphi(a) = ||a||$ (If $-\varphi(a) = ||a||$ then we

can write $\varphi(-a) = ||-a||$ and choose the self-adjoint element -a instead of a). Put $||a||_{\iota} - a = h^2$ ($h \ge 0, h \in \mathcal{A}$. Then $\varphi(h^2) = 0$ and

$$|-\varphi(d_{n}^{1}(a)) - \varphi(\frac{1}{2}\sum_{j=1}^{n-1}d_{j}(h)d_{n-j}(h) + \frac{1}{2}\sum_{j=1}^{n-1}d_{j}^{*}(h)d_{n-j}^{*}(h))|$$

$$= |\varphi(d_{n}^{1}(||a||\iota - a)) - \varphi(\frac{1}{2}\sum_{j=1}^{n-1}d_{j}(h)d_{n-j}(h) + \frac{1}{2}\sum_{j=1}^{n-1}d_{j}^{*}(h)d_{n-j}^{*}(h))|$$

$$= |\varphi(d_{n}^{1}(h^{2}) - \varphi(\frac{1}{2}\sum_{j=1}^{n-1}d_{j}(h)d_{n-j}(h) + \frac{1}{2}\sum_{j=1}^{n-1}d_{j}^{*}(h)d_{n-j}^{*}(h))|$$

$$= |\varphi(hd_{n}^{1}(h)) + \varphi(d_{n}^{1}(h)h)|$$

$$\leq |\varphi(h^{2})^{1/2}\varphi(d_{n}^{1}(h)^{2})^{1/2} + \varphi(d_{n}^{1}(h)^{2})^{1/2}\varphi(h^{2})^{1/2}$$

$$= 0.$$

Hence $\varphi(d_n^1(a)) = -\varphi(\frac{1}{2}\sum_{j=1}^{n-1}d_j(h)d_{n-j}(h) + \frac{1}{2}\sum_{j=1}^{n-1}d_j^*(h)d_{n-j}^*(h)).$ Suppose that $\{a_m\}$ is a sequence of self-adjoint elements in \mathcal{A} such that $a_m \to 0$ and $d_n^1(a_m) \to b(\neq 0)$. Let φ_m be a state on \mathcal{A} such that $|\varphi_m(b+a_m)| = ||b+a_m||$, and let φ_0 be an accumulation point of $\{\varphi_m\}$ in the state space of \mathcal{A} . Then we have

$$|\varphi_{m_k}(b + a_{m_k}) - \varphi_0(b)| = |\varphi_{m_k}(b + a_{m_k}) - \varphi_{m_k}(b) + \varphi_{m_k}(b) - \varphi_0(b)|$$

$$\leq |\varphi_{m_k}(b + a_{m_k}) - \varphi_{m_k}(b)| + |\varphi_{m_k}(b) - \varphi_0(b)|$$

$$\leq ||b + a_{m_k} - b|| + |\varphi_{m_k}(b) - \varphi_0(b)| \to 0$$

for some subsequence $\{m_k\}$ of $\{m\}$. Hence $|\varphi_0(b)| = ||b||$ and so

$$\varphi_0(d_n^1(b)) = -\varphi_0\left(\frac{1}{2}\sum_{j=1}^{n-1}d_j(h_b)d_{n-j}(h_b) + \frac{1}{2}\sum_{j=1}^{n-1}d_j^*(h_b)d_{n-j}^*(h_b)\right),$$

where $h_b = (\|b\|\iota - b)^{1/2}$. Similarly one can show that

$$|\varphi_{m_k}(d_n^1(a_{m_k})) - \varphi_0(b)| \to 0.$$

Also if $(h_{b+a_{m_k}})^2 = ||b+a_{m_k}||_{\iota} - (b+a_{m_k})$ then $h_{b+a_{m_k}}^2 \to h_b^2$ and since $h_{b+a_{m_k}}$'s and h_b are positive, $h_{b+a_{m_k}} \to h_b$. So continuity of $d_0^1, d_1^1, \ldots, d_{n-1}^1$ implies that

$$-\varphi_0\left(\frac{1}{2}\sum_{j=1}^{n-1}d_j(h_b)d_{n-j}(h_b) + \frac{1}{2}\sum_{j=1}^{n-1}d_j^*(h_b)d_{n-j}^*(h_b)\right)$$

$$= \lim_{m_k \to \infty} -\varphi_{m_k} \left(\frac{1}{2} \sum_{j=1}^{n-1} d_j \left(h_{b+a_{m_k}} \right) d_{n-j} \left(h_{b+a_{m_k}} \right) \right. \\ \left. + \frac{1}{2} \sum_{j=1}^{n-1} d_j^* \left(h_{b+a_{m_k}} \right) d_{n-j}^* h_{b+a_{m_k}} \right) \\ = \lim_{m_k \to \infty} \varphi_{m_k} (d_n^1 (b + a_{m_k})) \\ = \lim_{m_k \to \infty} \varphi_{m_k} (d_n^1 (b) + d_n^1 (a_{m_k})) \\ = \varphi_0 (d_n^1 (b) + \varphi_0 (b)) \\ = -\varphi_0 \left(\frac{1}{2} \sum_{j=1}^{n-1} d_j (h_b) d_{n-j} (h_b) + \frac{1}{2} \sum_{j=1}^{n-1} d_j^* (h_b) d_{n-j}^* (h_b) \right) + \varphi_0 (b).$$

Hence $\varphi_0(b) = 0$, which is a contradiction. So the closed graph theorem guarantees that d_n^1 is continuous.

Similarly we can show that d_n^2 's are continuous. Whence the continuity of the higher derivation $\{d_n\}$ is deduced. \square

Acknowledgement. This research was supported by a grant from Ferdowsi University of Mashhad; No. MP89133MIZ. The authors wish to acknowledge the referee for his/her valuable comments and suggestions.

References

- [1] H. G. Dales, Banach Algebras and Automatic Continuity, London Mathematical Society Monographs, New Series, 24. The Clarendon Press, Oxford University Press, Oxford, (2000).
- [2] H. Hasse and F. K. Schmidt, Noch eine Begrüdung der theorie der höheren Differential quotienten in einem algebraischen Funtionenkörper einer Unbestimmeten, J. Reine Angew. Math. 177, pp. 215–237, (1937).
- [3] S. Hejazian, A.R. Janfada, M. Mirzavaziri and M.S. Moslehian, Achievement of continuity of (φ, ψ) -derivations without linearity, Bull. Belg. Math. Soc.-Simon Stevn., **14**, No. 4, pp. 641–652, (2007).
- [4] S. Hejazian, T. L. Shatery, Automatic continuity of higher derivations on JB*-algebras, Bull. Iranian Math. Soc., **33**, No. 1, pp. 11–23, (2007).
- [5] N. P. Jewell, Continuity of module and higher derivations, Pacific J. Math. 68, pp. 91–98, (1977).

- [6] I. Kaplansky, Functional analysis, Some aspects of analysis and probability, Surveys in Applied Mathematics. Vol. 4 John Wiley & Sons, Inc., New York; Chapman & Hall, London, (1958).
- [7] R. J. Loy, Continuity of higher derivations, Pros. Amer. Math. Soc. 5, pp. 505–510, (1973).
- [8] M. Mirzavaziri and M. S. Moslehian, Automatic continuity of σderivations in C*-algebras, Proc. Amer. Math. Soc., 134, No. 11, pp. 3319–3327, (2006).
- [9] J. G. Murphy, Operator Theory and C^* -algebras, Academic Press, Inc., Boston, MA, (1990).
- [10] T. W. Palmer, Banach algebras and the general theory of *-algebras, Vol. I. Algebras and Banach algebras, Encyclopedia of Mathematics and its Applications 49, Cambridge University Press, Cambridge, (1994).
- [11] S. Sakai, On a conjecture of Kaplansky, Tohoku Math. J. (2) **12**, pp. 31–33, (1960).
- [12] S. Sakai, Operator Algebra in Dynamical Systems. Cambridge Univ. press, (1991).
- [13] Y. Uchino and T. Satoh, Functional field modular forms and higher derivations, Math. Ann. 311, pp. 439–466, (1998).
- [14] A. R. Villena, *Lie derivations on Banach algebras*, J. Algebra **226**, pp. 390-409, (2000).

Shirin Hejazian

Department of Mathematics Ferdowsi University P. O. Box 1159 Mashhad 91775 Iran

e-mail: hejazian@math.um.ac.ir

Madjid Mirzavaziri

Department of Mathematics Ferdowsi University P. O. Box 1159 Mashhad 91775

e-mail: mirzavaziri@gmail.com

and

Elahe Omidvar Tehrani

Department of Mathematics Ferdowsi University P. O. Box 1159 Mashhad 91775

Iran

e-mail : el_om3@stu-mail.um.ac.ir