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Abstract

Let A be an algebra. A sequence {d,} of linear mappings on A
is called a higher derivation if d,(ab) = 3°7_ d;(a)d,—;(b) for each
a,b € A and each nonnegative integer n. Jewell [Pacific J. Math.
68 (1977), 91-98], showed that a higher derivation from a Banach
algebra onto a semisimple Banach algebra is continuous provided that
ker(do) C ker(d,,), for all m > 1. In this paper, under a different ap-
proach using C*-algebraic tools, we prove that each higher derivation
{d,} on a C*-algebra A is automatically continuous, provided that it
is normal, 1. e. dy is the identity mapping on A.
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1. Introduction

Let A be an algebra. A linear mapping ¢ : A — A is called a derivation if
it satisfies the Leibniz rule, i. e. d(ab) = d(a)b+ad(b) for all a,b € A. If we
define the sequence {d, } of linear mappings on A by dy = I and d,, = %,
where [ is the identity mapping on A, then the Leibniz rule ensures us that

d,’s satisfy the condition
dp(ab) =Y dj(a)dn—;(b) (*)
j=0

for each a,b € A and each nonnegative integer n. This motivates us to
consider the sequences {d, } of linear mappings on an algebra A satisfying
(*). Such a sequence is called a higher derivation. Higher derivations were
introduced by Hasse and Schmidt [2], and algebraists sometimes call them
Hasse-Schmidt derivations. Though, if § : A — A is a derivation then
dy = % is a higher derivation, this is not the only example of a higher
derivation.

Regarding to a celebrated theorem of Sakai [11, 12], all derivations de-
fined on a C*-algebra are automatically continuous. Some results concern-
ing to the theorem are discussed in [8] and [3]. Regarding to the Sakai’s
theorem we can deduce that the higher derivation d,, = % defined on a
C*-algebra is automatically continuous in the sense that each d,, is contin-
uous. This poses the problem of automatic continuity of higher derivations.
Many mathematicians could find some affirmative answers to the problem
in special cases. Loy [7] proved that if A is an (F')-algebra which is a
subalgebra of a Banach algebra B of power series, then every higher deriva-
tion {d,} : A — B is automatically continuous. Jewell [5], showed that a
higher derivation from a Banach algebra onto a semisimple Banach algebra
is continuous provided that ker(dy) C ker(d,,), for all m > 1. Villena [14],
proved that every higher derivation from a unital Banach algebra A into
A/P, where P is a primitive ideal of A with infinite codimension, is con-
tinuous. Hejazian and Shatery [4] prove the automatic continuity of higher
derivations in the case of JB*-algebras.

Here, we prove automatic continuity of higher derivations in the do-
main of C*-algebras. Though, this is a consequence of the Jewell result in
[5], our proof just depends on C*-algebraic tools. Prior to that, we need
some elementary facts concerning higher derivations. For the definition
and elementary properties of C*-algebras we refer the reader to [6, 9] and
[10]. One can find a collection of suitable information about automatic
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continuity and some applications of higher derivations in [1] and [13].

2. Preliminaries

Let A be an algebra, Z: ={0,1,...,k} for k € N and Z* = {0,1,2,...}.
A higher derivation of order k is a sequence {d,} neZ of linear mappings
from A to A such that

dafab) = 3 dy a)doy (1)
=0

for all a,b € A and n € Z;. A sequence {d,},cz+ is a higher derivation of
infinite order if {dn}nezg is a higher derivation of order k for each k£ € N.
A higher derivation {d,,} is called normal if dy = I (the identity mapping
on A). As a simple example, for a derivation ¢ : 4 — A we can assume the
sequence dg = I , d,, = %. The Leibniz rule implies that {d,} is a higher
derivation.

A higher derivation {d,} is called continuous if each d,, is continuous.
It is said to be onto if dy is onto.

Lemma 2.1. If {d,} is a normal higher derivation on a unital C*-algebra
with unit ¢, then d,,(t) = 0 for n > 1.

Proof.  Since {d,} is normal, d; is a dervation and so d;(¢) = 0. Let
dj(t) =0for 1 < j <n—1. Then we have

Hence d,(¢) =0. O

From now on, we assume that A is a unital C*-algebra. In fact, if A
has no identity, we shall consider the C*-unitization A; of A, and define
dy, (t) = 0 for each n.

Recall that if 7' is a linear mapping and we define T* by T*(a) = T'(a*)*
for all @ € A, then T™ is a linear mapping on A.

Lemma 2.2. Let {d,} be a higher derivation on a C*-algebra A. Then
{d*} is also a higher derivation on A.
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Proof. For each a,b € A and n € Z* we have
dy (ab) = (dn(b*a™))* (Zd (0" )dpn—j( ) Z ; d*

Thus {d}} is a higher derivation. O

It is known that the derivation d : C'([0,1]) — C([0,1]) defined by
d(f) = f' on the dense subalgebra C'([0,1]) of C([0,1]) is not continuous.
So the higher derivation {‘i—?} is an example of a discontinuous densely
defined normal higher derivation in the C*-algebra C([0,1]). In the next
section, we will show that this is not the case for everywhere defined higher
derivations on C*-algebras.

3. The Result

Theorem 3.1. Let A be a unital C*-algebra. Then every normal higher
derivation {d,} on A is continuous.

Proof. For each n € Z1 we can write

dy +d, .idy —idy,
5 +1 5 .

dp(ab) =

Put d. = %;—d” and d2 = idy—idn  Then dl’s and d2’s are *-mappings and
dL(t) = d2(:) = 0 for all n € N. We also have

1 n—1 1 n—1
d} (ab) = ad),(b) + d}.(a)b + 5 > dj(a)dn—j(b) + 5 > di(a)d;,
j=1 j=1

- n—1 - n—1
d2(ab) = ad2 (b) + d2 (a)b — % ; d;(a)dn—;(b) + % ; di(a)d;,_

It suffices to show that d} and d? are continuous for all n € Z*. At first
we prove continuity of d\’s by induction:

Since d§ = I, d} is continuous. Suppose that djl- is continuous for j <
n—1. Let a be a self-adjoint element of 4 and ¢ be a state on A such that
lp(a)] = |la|l. We may assume that ¢(a) = ||a|| (If —p(a) = ||a|| then we
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can write p(—a) = || — al| and choose the self-adjoint element —a instead
of a). Put |lallt —a = h? (h > 0,h € A. Then ¢(h?) =0 and

n—1 n—1
|~ p(dh(@) — o5 3 di(n)dny() + 3 3 di () (h)
j=1 j=1
n—1 n—1
= ol — @) — ¢(5 Y ds(B)dns(1) + 5 S di () (h)
=1 =1
n—1 n—1
= (@A) — p(5 S di (W) s(h) + 5 S d()ds_(h)
=1 j=1
= (il (1) + (A ()h)
< QU dh ()2 + ol () P (2)

= 0.
Hence (dy,(a)) = —o(3 £521 dj(h)dn—(h) + 5 325=1 dj(h)dy,_; ().

Suppose that {a,,} is a sequence of self—adjomt elements in A such that
am — 0 and d.(an,) — b(# 0). Let ¢, be a state on A such that
|om (b + am)| = ||b+ am||, and let ¢ be an accumulation point of {¢,,} in
the state space of A. Then we have

om0+ amy) = po(b)] = lwmk(bJramk)— £ (0) + @y (b) = o (0)]
< e (b + amy) = omy (0)] + |, (0) = o ()]
< b+ am, — b||+|90mk() po(b)] — 0

for some subsequence {my} of {m}. Hence |¢o(b)| = ||b]| and so

wo(dL (b)) ( Zd (ho)dn—j(hp) + = Zd* hy)d )),

where hy = (||b]|e — b)'/2. Similarly one can show that

| omy, (dy,(am,,)) — @o(b)] — 0.

Also if (hb+amk)2 = [b+ am, ||t — (b + am,) then hb+a — h? and since
hb.l’_amk ’s and hy, are positive, hb+am]€ — hyp. So continuity Of dé, d%, ceey d,ll_l
implies that

o (% S dy )y ) + 2 d;f(hwd;:jmb))
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= lim  —ppm, (% j;ll d; (hb+amk) dp—j (hb+(lmk)

mE—00
302 0 (hran, ) iy Pivan, )

=1imyn, — 00 Pmy, (AL (b + am,))

=iy, 00 Pmy, (dp, () + dyy (@, ))

=0 (dy,(b) + o (b))

=00 (3028 dj(ho)d—j(ho) + 5 S5t di(h)ds () ) + po(b).
Hence ¢o(b) = 0, which is a contradiction. So the closed graph theorem

guarantees that d! is continuous.

Similarly we can show that d?’s are continuous. Whence the continuity

of the higher derivation {d,} is deduced. O
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