Proyecciones Journal of Mathematics Vol. 29, N^o 1, pp. 1-8, May 2010. Universidad Católica del Norte Antofagasta - Chile DOI: 10.4067/S0716-09172010000100001

SOME DIFFERENCE SEQUENCES DEFINED BY A SEQUENCE OF MODULUS FUNCTIONS

AHMAD H. A. BATAINEH

and

IBRAHIM M. A. SULAIMAN AL AL-BAYT UNIVERSITY, JORDAN Received : November 2009. Accepted : January 2010

Abstract

The idea of difference sequence spaces was introduced by Kizmaz [6], and this concept was generalized by Bektas and Colak [1]. In this paper, we define the sequence spaces $c_0(F, \Delta_u^m x)$ and $l_{\infty}(F, \Delta_u^m x)$, where $F = (f_k)$ is a sequence of modulus functions, and examine some inclusion relations and properties of these spaces.

Subjclass [2000] : 40A05, 40C05,46A45.

Keywords : Difference sequence spaces, A sequence of modulus functions.

1. Definitions and notations

Let w denote the set of all complex sequences $x = (x_k)$, and l_{∞}, c , and c_0 be the linear spaces of bounded, convergent, and null sequences with complex terms, respectively, normed by $|| x || = \sup_k |x_k|$, where $k \in \mathbf{N}$, the set of positive integers.

Kizmaz [6] defined the sequence spaces

 $l_{\infty}(\Delta) = \{ x \in w : \Delta x \in l_{\infty} \},\$

c $(\Delta) = \{x \in w : \Delta x \in c\}$, and

 $c_0(\Delta) = \{x \in w : \Delta x \in c_0\}$, where for any sequence $x = (x_k)$, the difference sequence Δx is defined by

 $\Delta x = (\Delta x_k)_{k=1}^{\infty} = (x_k - x_{k+1})_{k=1}^{\infty},$ $\Delta^0 x = (\Delta^0 x_k)_{k=1}^{\infty} = (x_k)_{k=1}^{\infty}.$

Kizmaz [6] proved that these are Banach spaces with the norm $||x|| = |x_1| + ||x||_{\infty}$. Also, he showed that $E \subset E(\Delta)$, where $E = \{l_{\infty}, c, c_0\}$, since there exists a sequence $x = (x_k)$ such that $x_k = k$, for each k, that is , $x = (1, 2, 3, \cdots)$ for which $\Delta x = (-1, -1, -1, \cdots)$, so that although x is not convergent, but it is Δ -convergent.

If m is a nonnegative integer and $x = (x_k)$ is any sequence, then the difference sequences $\Delta x, \Delta^2 x, \dots, \Delta^m x$ are defined by

$$\Delta x = (\Delta x_k)_{k=1}^{\infty} = (x_k - x_{k+1})_{k=1}^{\infty},$$

$$\Delta^2 x = \Delta(\Delta x) = \Delta x_k - \Delta x_{k+1},$$

$$\Delta^m x = \Delta(\Delta^{m-1}x) = \Delta^{m-1}x_k - \Delta^{m-1}x_{k+1},$$

so that

$$\Delta^m x_k = \sum_{r=0}^m (-1)^r {m \choose r} x_{k+r}.$$

Let U be the set of all sequences $u = (u_k)$ such that $u_k \neq 0$ for each k. Then Gnanaseelan and Srivastava [4] defined and studied the sequence spaces

$$\begin{split} \mathbf{E}(\mathbf{u},\Delta) &= \{x \in w : u\Delta x \in E\},\\ \text{where } E &= \{l_{\infty},c,c_0\} \text{ and } u\Delta x = u_k x_k - u_{k+1} x_{k+1}.\\ \text{After then, Et. and Colak [2] defined the sequence spaces}\\ \mathbf{E}(\Delta^m) &= \{x \in w : \Delta^m x \in E\},\\ \text{where } E &= \{l_{\infty},c,c_0\}. \end{split}$$

They proved that these are Banach spaces with the norm $||x|| = \sum_{i=1}^{m} ||x_i|| = \sum$

 $x_i \mid + \parallel \Delta^m x \parallel_{\infty} .$

We recall that a modulus function f is a function from $[0,\infty)$ to $[0,\infty)$ such that

÷

(i) f(x) = 0 if and only if x = 0,

(ii)
$$f(x+y) \le f(x) + f(y)$$
 for all $x, y \ge 0$,

(iii) f is increasing,

(iv) f is continuous from the right at 0.

Since $|f(x) - f(y)| \le f(|x - y|)$, it follows from conditions (ii) and (iv) that f is continuous everywhere on $[0, \infty)$.

A modulus function may be bounded or unbounded. For example, $f(t) = \frac{t}{t+1}$ is bounded but $f(t) = t^p$ ($0) is unbounded. Furthermore, we have <math>f(nx) \le nf(x)$, from condition (ii), and so $f(x) = f(nx\frac{1}{n}) \le nf(\frac{x}{n})$, hence $\frac{1}{n}f(x) \le f(\frac{x}{n})$, for all $n \in \mathbf{N}$.

Ruckle [13] used the concept of modulus function to define the sequence space

$$\mathcal{L}(\mathbf{f}) = \{ \mathbf{x} \in w : \sum_{k=1}^{\infty} f(|x_k|) < \infty \}.$$

If we take $f(x) = x^p$, then L(f) reduces to the familiar space l_p which is given by

$$l_p = \{x \in w : \sum_{k=1}^{\infty} | x_k |^p < \infty\}.$$

In particular, if $f(x) = x$, then $L(f) = l_1$ which is given by
$$l_1 = \{x \in w : \sum_{k=1}^{\infty} | x_k | < \infty\}.$$

Several authors including Maddox ([8]-[11]), Ozturk and Bilgin [12], and some others studied some sequence spaces defined by a modulus function. Let X be a sequence space. Then the sequence space X(f) is defined by

Let X be a sequence space. Then the sequence space X(f) is defined by $X(f) = \{x \in w : f(|x_k|) \in X\}.$

Kolk [7] gave an extension of X(f) by considering a sequence of modulus functions $F = (f_k)$ and defined the space

 $\mathbf{X}(\mathbf{F}) = \{ \mathbf{x} \in w : f_k(\mid x_k \mid) \in X \}.$

Gaur and Mursaleen [3] defined and studied the following sequence spaces

$$l_{\infty}(F, \Delta) = \{ x \in w : \Delta x \in l_{\infty}(F) \},\$$
and

 $c_0(F,\Delta) = \{ x \in w : \Delta x \in c_0(F) \}.$

For a nonnegative integer m, Bektas and Colak [1] extended the above mentioned spaces to

 $l_{\infty}(F, \Delta^m) = \{ x \in w : \Delta^m x \in l_{\infty}(F) \},\$ and $c_{\infty}(F, \Delta^m) = \{ x \in w : \Delta^m x \in c_{\infty}(F) \},\$

$$\mathbf{c}_0(F,\Delta^m) = \{ x \in w : \Delta^m x \in c_0(F) \}.$$

We further give an extension of the spaces of Bektas and Colak [1] and define the sequence spaces

 $l_{\infty}(F, \Delta_{u}^{m}) = \{x \in w : \Delta_{u}^{m} x \in l_{\infty}(F)\},$ and $c_{0}(F, \Delta_{u}^{m}) = \{x \in w : \Delta_{u}^{m} x \in c_{0}(F)\},$ where $u = (u_{k})$ is any sequence such that $u_{k} \neq 0$ for each k, and $\Delta_{u}^{0} x = u_{k} x_{k},$ $\Delta_{u}^{1} x = u_{k} x_{k} - u_{k+1} x_{k+1},$ $\Delta_{u}^{2} x = \Delta(\Delta_{u}^{1} x),$ $\Delta_{u}^{m} x = \Delta(\Delta_{u}^{m-1} x),$ so that $\Delta_{u}^{m} x = \Delta_{u_{k}}^{m} x_{k} = \sum_{r=0}^{m} (-1)^{r} {m \choose r} u_{k+r} x_{k+r}.$ If $u = e = (1, 1, 1, \cdots)$, then these spaces will give the spaces of Bektas

In u = e = (1, 1, 1, ...), then these spaces will give the spaces of Bektas and Colak [1] as special cases.

2. Main results

For a sequence $F = (f_k)$ of modulus functions, we will give the necessary and sufficient conditions for the inclusion between $X(\Delta_u^m)$ and $Y(F, \Delta_u^m)$, where $X, Y = l_{\infty}$ or c_0 .

We need the following Lemmas (see Kolk [7]):

Lemma 2.1. The condition $\sup_k f_k(t) < \infty, t > 0$ holds if and only if there exists a point $t_0 > 0$ such that $\sup_k f_k(t_0) < \infty$.

Lemma 2.2. The condition $\inf_k f_k(t) > 0, t > 0$ holds if and only if there exists a point $t_0 > 0$ such that $\inf_k f_k(t_0) > 0$.

Now, we prove the following theorems

Theorem 2.3. For a sequence $F = (f_k)$ of modulus functions, the following statements are equivalent :

(i) $l_{\infty}(\Delta_u^m) \subseteq l_{\infty}(F, \Delta_u^m)$ (ii) $c_0(\Delta_u^m) \subseteq l_{\infty}(F, \Delta_u^m)$ (iii) $\sup_k f_k(t) < \infty, t > 0$

÷

Proof. (i) implies (ii) is obvious

(ii) implies (iii) : Let $c_0(\Delta_u^m) \subseteq l_\infty(F, \Delta_u^m)$. Suppose that (iii) is not true. Then by Lemma 2.1, we see that $\sup_k f_k(t) = \infty$, for all t > 0, and therefore there is a sequence (k_i) of positive integers such that

(2.1)
$$f_{k_i}(\frac{1}{i}) > i \text{ for } i = 1, 2, 3, \cdots$$

Define $x = (x_k)$ as follows

$$\mathbf{x}_k = \begin{cases} \frac{1}{i}, & k = k_i \\ 0, & \text{otherwis} \end{cases}$$

Then $x \in c_0(\Delta_u^m)$, but by (2.1), $x \notin l_\infty(F, \Delta_u^m)$ which contradicts (ii). Hence (iii) must hold.

(iii) implies (i) : Let (iii) be satisfied and $x \in l_{\infty}(\Delta_{u}^{m})$. If we suppose that $x \notin l_{\infty}(F, \Delta_{u}^{m})$, then $\sup_{k} f_{k}(|\Delta_{u}^{m}x_{k}|) = \infty$ for $\Delta_{u}^{m}x \in l_{\infty}$. Now take $t = |\Delta_{u}^{m}x|$, then $\sup_{k} f_{k}(t) = \infty$ which contradicts (iii). Hence $l_{\infty}(\Delta_{u}^{m}) \subseteq l_{\infty}(F, \Delta_{u}^{m})$. This completes the proof of the theorem. \Box

Theorem 2.4. For a sequence $F = (f_k)$ of modulus functions, the following statements are equivalent :

(i) $c_0(F, \Delta_u^m) \subseteq c_0(\Delta_u^m)$ (ii) $c_0(F, \Delta_u^m) \subseteq l_{\infty}(\Delta_u^m)$ (iii) $\inf_k f_k(t) > 0, (t > 0)$

Proof. (i) implies (ii) is obvious

(ii) implies (iii) : Let $c_0(F, \Delta_u^m) \subseteq l_\infty(\Delta_u^m)$. Suppose that (iii) does not hold. Then by Lemma 2.2, we see that

(2.2)
$$\inf f_k(t) = \infty, (t > 0)$$

and therefore there is a sequence (k_i) of positive integers such that $f_{k_i}(i^2) < \frac{1}{i}$ for $i = 1, 2, 3, \cdots$. Define $x = (x_k)$ as follows

$$\mathbf{x}_k = \begin{cases} i^2, & k = k_i \text{ for } i = 1, 2, 3, \cdots \\ 0, & \text{otherwise} \end{cases}$$

Then by (2.2), $x \in c_0(F, \Delta_u^m)$ but $x \notin l_\infty(\Delta_u^m)$ which contradicts (ii). Hence (iii) must hold.

(iii) implies (i) : Let (iii) be satisfied and $x \in c_0(F, \Delta_u^m)$ that is $\lim_k f_k(|\Delta_u^m x_k|) = 0$. Suppose that $x \notin c_0(\Delta_u^m)$, then for some number $\varepsilon_0 > 0$ and positive integer k_0 , we have $|\Delta_u^m x_k| \varepsilon_0 > 0$ for $k \ge k_0$. Therefore $f_k(\varepsilon_0) \le 0$

 $f_k(\mid \Delta_u^m x_k \mid)$ for $k \ge k_0$ and hence $\lim_k f_k(\varepsilon_0) = 0$ which contradicts (iii). Thus $c_0(F, \Delta_u^m) \subseteq c_0(\Delta_u^m)$ and this completes the proof of the theorem. \Box

Theorem 2.5. The inclusion $l_{\infty}(F, \Delta_u^m) \subseteq c_0(\Delta_u^m)$ holds if and only if

(2.3)
$$\lim_{k} f_k(t) = \infty \text{ for } t > 0$$

Proof. Let $l_{\infty}(F, \Delta_u^m) \subseteq c_0(\Delta_u^m)$ and suppose that (2.3) does not hold. Then there is a number $t_0 > 0$ and a sequence (k_i) of positive integers such that

$$(2.4) f_{k_i}(t_0) \le L < \infty$$

Define the sequence $x = (x_k)$ by

$$t_0, \quad k = k_i \text{ for } i = 1, 2, 3, \cdots$$

$$\mathbf{x}_k = \begin{cases} 0, & \text{otherwise} \\ 0, & \text{otherwise} \end{cases}$$

Then $x \in l_{\infty}(F, \Delta_u^m)$ by (2.4) but $x \notin c_0(\Delta_u^m)$ so that (2.4) must hold if $l_{\infty}(F, \Delta_u^m) \subseteq c_0(\Delta_u^m)$.

Conversely, Suppose that (2.3) is satisfied. If $x \in l_{\infty}(F, \Delta_u^m)$, then $f_k(|\Delta_u^m x_k|) \leq L < \infty$ for $k = 1, 2, 3, \cdots$

Now suppose that $x \notin c_0(\Delta_u^m)$. Then for some $\varepsilon_0 > 0$ and positive integer k_0 , we have $|\Delta_u^m x_k| > \varepsilon_0$ for $k \ge k_0$. Therefore $f_k(\varepsilon_0) \le f_k(|\Delta_u^m x_k|) \le L$ for $k \ge k_0$ which contradicts (2.3). Hence $x \in c_0(\Delta_u^m)$. \Box

Theorem 2.6. The inclusion $l_{\infty}(\Delta_u^m) \subseteq c_0(F, \Delta_u^m)$ holds if and only if

(2.5)
$$\lim_{k} f_k(t) = 0 \text{ for } t > 0$$

Proof. Let $l_{\infty}(\Delta_u^m) \subseteq c_0(F, \Delta_u^m)$ and suppose that (2.5) does not hold. Then

(2.6)
$$\lim_{k} f_k(t) = l \neq 0$$

for some $t_0 > 0$. Define the sequence $x = (x_k)$ by $\begin{aligned} \mathbf{x}_k &= t_0 \sum_{r=0}^m (-1)^m \binom{m+k-u-1}{k-u} \text{ for } k = 1, 2, 3, \cdots. \\ \text{Then } x \notin c_0(F, \Delta_u^m) \text{ by (2.6). Hence (2.5) must hold.} \\ \text{Conversely, Suppose that (2.5) is satisfied. If } x \in l_\infty(\Delta_u^m), \text{ then} \\ \Delta_u^m x_k &| \leq L < \infty \text{ for } k = 1, 2, 3, \cdots. \\ \text{Therefore } f_k (|\Delta_u^m x_k|) \leq f_k(L) \text{ for } k = 1, 2, 3, \cdots \text{ and } \lim_k f_k (|\Delta_u^m x_k|) \leq f_k(L) \text{ for } k = 1, 2, 3, \cdots. \end{aligned}$

) $\leq \lim_k f_k(L) = 0$, by (2.5). Hence $x \in c_0(F, \Delta_u^m)$. \Box

References

- Bektas, Cigdem, A. and Colak, R., Generalized difference sequence spaces defined by a sequence of modulli, Soochow J. Math., 29(2), pp. 215-220, (2003).
- [2] Et., M. and Colak, R., On some generalized difference sequence spaces, Soochow J. Math., 21, pp. 377-386, (1995).
- [3] Gaur, A. K. and Mursaleen, Difference sequence spaces, Internat. J. Math. & Math. Sci., 21(4), pp. 701-706, (1998).
- [4] Gnanaseelan, C. and Srivastava, P. D., The α-, β-, γ-duals of some generalized difference sequence spaces, Indain J. Math., 38(2), pp. 111-120, (1996).
- [5] Kamthan, P. K. and Gupta, M., Sequence spaces and series, Lecture Notes in Pure and Applied Mathematics, vol. 65, Marcel Dekker, New York, (1981).
- [6] Kizmaz, H., On certain sequence spaces, Canad. Math. Bull. 24, pp. 169-176, (1981).
- [7] Kolk, E., Inclusion theorems for some sequence spaces defined by a sequence of modulli, Acta Comment. Univ. Tartu, 970, pp. 65-72, (1994).
- [8] Maddox, I. J., Some properties of paranormed sequence spaces, J. London Math. Soc. 1, pp. 316-322, (1969).
- [9] Maddox, I. J., Paranormed sequence spaces generated by infinite matrices, Proc. Camb. Phil. Soc., 64, pp. 431-435, (1969).

- [10] Maddox, I. J., Elements of Functional Analysis, 2nd Edition, Cambridge University Press, (1970).
- [11] Maddox, I. J., Sequence spaces defined by a modulus, Math. Proc. Camb. Phil. Soc. 100, pp. 161-166, (1986).
- [12] Öztürk, E. and Bilgen, T., Strongly summable sequence spaces defined by a modulus, Indian J. Pure Appl. Math. 25(6), pp. 621-625, (1994).
- [13] Ruckle, W. H., FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math. 25, pp. 973-978, (1973).

Ahmad H. A. Bataineh Department of Mathematics Al al-Bayt University P. O. Box 130095 Mafraq Jordan e-mail : ahabf2003@yahoo.ca

and

Ibrahim M. A. Sulaiman

Department of Mathematics Al al-Bayt University P. O. Box 130095 Mafraq Jordan e-mail : himo717@yahoo.com