Statistical convergence of complex uncertain sequences defined by Orlicz function




Uncertainty theory, Complex uncertain variable, Statistical convergence


Complex uncertain variables are measurable functions from an uncertainty space to the set of complex numbers and are used to model complex uncertain quantities. This paper introduces the statistical convergence concepts of complex uncertain sequences: statistical convergence almost surely(a.s.), statistical convergence in measure, statistical convergence in mean, statistical convergence in distribution and statistical convergence uniformly almost surely sequences of complex uncertain sequences defined by Orlicz function. In addition, Decomposition Theorems and relationships among them are discussed.

Author Biography

Binod Chandra Tripathy, Tripura University.

Dept. of Mathematics.


R. C. Buck, “Generalized asymptotic density”, American journal of mathematics, vol. 75, no. 2, pp. 335–346, Apr. 1953, doi: 10.2307/2372456.

X. Chen, Y. Ning, and X. Wang, “Convergence of complex uncertain sequences”, Journal of intelligent & fuzzy systems, vol. 30, no. 6, pp. 3357–3366, Apr. 2016, doi: 10.3233/IFS-152083.

H. Fast, “Sur la convergence statistique”, Colloquium mathematicae, vol. 2, no. 3-4, pp. 241-244, 1951. [On line].Available:

J. A. Fridy, “On statistical convergence”, Analysis, vol. 5, no. 4, pp. 301–313, 1985, doi: 10.1524/anly.1985.5.4.301.

M. A. Krasnoselʹskiĭ and I︠A︡ B. Rutit︠s︡kiĭ, Convex functions and Orlicz spaces. Groningen: P. Noordhoff Ltd., 1961. [On line]. Available:

J. Lindenstrauss and L. Tzafriri, “On orlicz sequence spaces”, Israel journal of mathematics, vol. 10, no. 3, pp. 379–390, Sep. 1971, doi: 10.1007/BF02771656.

J. Lindenstrauss, “Some aspects of the theory of Banach spaces”, Advances in mathematics, vol. 5, no. 2, pp. 159–180, Oct. 1970. doi: 10.1016/0001-8708(70)90032-0.

B. Liu, Uncertainty theory: a branch of mathematics for modeling human uncertainty, vol. 300. Berlin: Springer, 2010, doi: 10.1007/978-3-642-13959-8.

B. Liu, Uncertainty theory, 5th ed. Berlin: Springer, 2016, doi: 10.1007/978-3-540-73165-8.

M. Et, P. Y. Lee and B. C. Tripathy, “Strongly almost (V,λ)(∆r)- summable sequences defined by Orlicz function”, Hokkaido mathematical journal, vol. 35, pp. 197-213, 2006. [On line]. Available:

Z. Peng, "Complex uncertain variable", Doctoral dissertation, Tsinghua University, 2012.

T. Šalát , “On statistically convergent sequences of real numbers”, Mathematica slovaca, vol. 30, no. 2, pp. 139-150, 1980. [On line]. Available:

I. J. Schoenberg, “The integrability of certain functions and related summability methods”, The american mathematical monthly, vol. 66, no. 5, pp. 361–775, May 1959, doi: 10.1080/00029890.1959.11989303.

A. J. Dutta and B. C. Tripathy, “Statistically pre-Cauchy Fuzzy real-valued sequences defined by Orlicz function”, Proyecciones (Antofagasta. On line), vol. 33, no. 3, pp. 235–243, Sep. 2014, doi: 10.4067/S0716-09172014000300001.

B. C. Tripathy and H. Dutta, “On some lacunary difference sequence spaces defined by a sequence of Orlicz functions and q-lacunary Δnm-statistical convergence”, Analele Universitatii "Ovidius" Constanta - Seria matematica, vol. 20, no. 1, pp. 417–430, May 2012, doi: 10.2478/v10309-012-0028-1.

B. C. Tripathy and R. Goswami, “Vector valued multiple sequence spaces defined by Orlicz function”, Boletim da Sociedade paranaense de matemática, vol. 33, no. 1, p. 67, 2015, doi: 10.5269/bspm.v33i1.21602.

B. C. Tripathy and S. Mahanta, “On a class of generalized lacunary difference sequence spaces defined by orlicz functions”, Acta mathematicae applicatae sinica, english series, vol. 20, no. 2, pp. 231–238, Jun. 2004, doi: 10.1007/s10255-004-0163-1.

B. C. Tripathy and S. Mahanta, “On a class of difference sequences related to the ℓp space defined by Orlicz functions”, Mathematica slovaca, vol. 57, no. 2, pp. 171–178, Apr. 2007., doi: 10.2478/s12175-007-0007-6.



How to Cite

P. K. Nath and B. C. Tripathy, “Statistical convergence of complex uncertain sequences defined by Orlicz function”, Proyecciones (Antofagasta, On line), vol. 39, no. 2, pp. 301-315, Apr. 2020.




Most read articles by the same author(s)

1 2 > >>