# On rough convergence of triple sequence space of Bernstein operator of fuzzy numbers defined by a metric

## DOI:

https://doi.org/10.22199/issn.0717-6279-2020-02-0016## Keywords:

Triple sequences, Rough convergence, Closed and convex, Cluster points and rough limit points, Fuzzy numbers, Bernstein polynomials## Abstract

We define the concept of rough limit set of a triple sequence space of Bernstein polynomials of fuzzy numbers and obtain the relation between the set of rough limit and the extreme limit points of a triple sequence space of Bernstein polynomials of fuzzy numbers. Finally, we investigate some properties of the rough limit set of Bernstein polynomials.## References

S. Aytar, “Rough statistical convergence”, Numerical functional analysis and optimization, vol. 29, no. 3-4, pp. 291–303, Apr. 2008, doi: 10.1080/01630560802001064.

S. Aytar, “The rough limit set and the core of a real sequence”, Numerical functional analysis and optimization, vol. 29, no. 3-4, pp. 283–290, May 2008, doi: 10.1080/01630560802001056

A. Esi, “On some triple almost lacunary sequence spaces defined by Orlicz functions”, Research and reviews: discrete mathematical structures, vol. 1, no. 2, pp. 16-25, 2014. [On line]. Available: https://bit.ly/3bzXom4

A. Esi and M. N. Catalbas, “Almost convergence of triple sequences”, Global journal of mathematical analysis, vol. 2, no. 1, 2014, doi: 10.14419/gjma.v2i1.1709

A. Esi and E. Savas, “On lacunary statistically convergent triple sequences in probabilistic normed space”, Applied mathematics & information sciences, vol. 9, no. 5, pp. 2529-2534, Sep. 2015. [On line]. Available: https://bit.ly/2yF0aHW

A. Esi, S. Araci, and M. Acikgoz, “Statistical convergence of Bernstein operators”, Applied mathematics & information sciences, vol. 10, no. 6, pp. 2083-2086, Dec. 2016. [On line]. Available: https://bit.ly/34UJVTt

A. Esi, S. Araci, and Ayten Esi, “λ-Statistical convergence of Bernstein polynomial sequences”, Advances and applications in mathematical sciences, vol. 16, no. 3, pp. 113-119, Jan. 2017. [On line]. Available: https://bit.ly/2XVlbsz

A. Esi, N. Subramanian, and A. Esi, “On Triple sequence space of Bernstein operator of Rough I- convergence pre-cauchy sequences”, Proyecciones (Antofagasta, On line), vol. 36, no. 4, pp. 567-587, 2017, doi: 10.4067/S0716-09172017000400567.

A. J. Datta, A. Esi, and B. C. Tripathy, “Statistically convergent triple sequence spaces defined by Orlicz function”, Journal of mathematical analysis, vol. 4, no. 2, pp. 16-22, 2013. [On line]. Available: https://bit.ly/353IulB

S. Debnath, B. Sarma, and B. C. Das, “Some generalized triple sequence spaces of real numbers”, Journal of nonlinear analysis and optimization, vol. 6, no. 1, pp. 71-79, 2015. [On line]. Available: https://bit.ly/2VsTxBC

E. Dündar and C. Cakan, “Rough I− convergence”, Demonstratio mathematica, Accepted.

H. X. Phu, “Rough convergence in normed linear spaces”, Numerical functional analysis and optimization, vol. 22, no. 1-2, pp. 199–222, Mar. 2001, doi: 10.1081/NFA-100103794.

H. X. Phu, “Rough continuity of linear operators”, Numerical functional analysis and optimization, vol. 23, no. 1-2, pp. 139–146, Jan. 2002, doi: 10.1081/NFA-120003675.

H. X. Phu, “Rough convergence in infinite dimensional normed spaces”, Numerical functional analysis and optimization, vol. 24, no. 3-4, pp. 285–301, Jan. 2003, doi: 10.1081/NFA-120022923.

A. Sahiner, M. Gurdal, and F. K. Duden, “Triple sequences and their statistical convergence”, Selçuk journal of applied mathematics, vol. 8, no. 2, pp. 49-55, 2007. [On line]. Available: https://bit.ly/2VvgnZy

A. Sahiner, B. C. Tripathy, “Some I related properties of triple sequences”, Selçuk journal of applied mathematics, vol. 9, no. 2, pp. 9-18, 2008. [On line]. Available: https://bit.ly/3cDBpdX

N. Subramanian and A. Esi, “The generalized tripled difference of χ3 sequence spaces”, Global journal of mathematical analysis, vol. 3, no. 2, pp. 54–60, Mar. 2015, doi: 10.14419/gjma.v3i2.4412.

## Published

## How to Cite

*Proyecciones (Antofagasta, On line)*, vol. 39, no. 2, pp. 261-274, Apr. 2020.