# Partition of the spectra for the lower triangular double band matrix as generalized difference operator Δv over the sequence spaces c and lp (1 < p < ∞)

### Abstract

Let the sequence (vk) is assumed to be either constant or strictly decreasing sequence of positive real numbers satisfying limk→∞ vk = L > 0 and supk vk ≤ 2L. Then the generalized difference operator Δv is Δv x = Δv (xn) = (vnxn − vn−1xn−1)∞n=0 with x−1 = v−1 = 0. The aim of this paper is to obtain the approximate point spectrum, the defect spectrum and the compression spectrum of the operator Δv and modified of the operator Δv on the sequence spaces c and ????p (1 < p < ∞).### References

A. M. Akhmedov and S. R. El-Shabrawy, “The spectrum of the generalized lower triangle double-band matrix Δa over the sequence space c”, Al Azhar University engineering journal, vol. 5 no. 9, pp. 54-60, 2010.

A. M. Akhmedov and S. R. El-Shabrawy, “On the fine spectrum of the operator Δv over the sequence space c and lp, (1 < p < ∞)”, Applied mathematics & information sciences, vol. 5, no. 3, pp. 635-654, Sep. 2011. [On line]. Available: https://bit.ly/3axJCjR

B. Altay and F. Başar, “On the fine spectrum of the difference operator on c0 and c”, Information sciences, vol. 168, no. 1-4, pp. 217-224, Dec. 2004, doi: 10.1016/j.ins.2004.02.007.

J. Appell, E. D. Pascale, and A. Vignoli, Nonlinear spectral theory. Berlin: Walter de Gruyter, 2004.

F. Başar, N. Durna, and M. Yildirim, “Subdivisions of the spectra for genarilized difference operator over certain sequence spaces”, Thai journal of mathematics, vol. 9, no. 2, pp. 285-295, 2011. [On line]. Available: https://bit.ly/30KeEQR

R. Das and B. C. Tripathy, “The spectrum and fine spectrum of the lower triangular matrix B (r, s, t) on the sequence space cs”, Songklanakarin journal of science and technology, vol. 38, no. 3, pp. 265-274, May-Jun. 2016, doi: 10.14456/sjst-psu.2016.36.

R. Das, “On the spectrum and fine spectrum of the upper triangular matrix U (r1, r2; s1, s2) over the sequence space c0”, Afrika matematika, vol. 28, no. 5-6, pp. 841–849, Feb. 2017, doi: 10.1007/s13370-017-0486-8.

R. Das, “On the fine spectrum of the lower triangular matrix B(r, s) over the Hahn sequence space”, Kyungpook mathematical journal, vol. 57, no. 3, pp. 441-455, 2017. [On line]. Available: https://bit.ly/2Rf7l0t

N. Durna and M. Yildirim, “Subdivision of the spectra for factorable matrices on c0”, Gazi university journal of science, vol. 24, no. 1, pp. 45-49, 2011. [On line]. Available: https://bit.ly/37hOgAz

N. Durna, “Subdivision of the spectra for the generalized upper triangular double-band matrices Δuv over the sequence spaces c0 and c”, Adıyaman university journal of science, vol. 6, no. 1, pp. 31-43, 2016. [On line]. Available: https://bit.ly/3aA0S8b

N. Durna, “Subdivision of the spectra for the generalized difference operator Δa,b on the sequence space ????p, (1 < p < ∞)”, Celal bayar üniversitesi fen bilimleri dergisi, vol. 13, no. 2, pp. 359-364, Jun. 2017, doi: 10.18466/cbayarfbe.319876.

N. Durna, M. Yildirim, and R. Kılıç, “Partition of the spectra for the generalized difference operator B(r, s) on the sequence space cs”, Cumhuriyet science journal, vol. 39, no. 1, pp. 7-15, 2018, doi: 10.17776/csj.369069.

N. Durna, “Subdivision of spectra for some lower triangular doubleband matrices as operators on c0”, Ukrains’kyi matematychnyi zhurnal, vol. 70, no. 7, pp. 1052-1062, Jul. 2018.

S. R. El-Shabrawy, “On the spectrum of the operator Δv over the space lp, (1 < p < ∞)”, Bakı Universiteti Xəbərlərinin. Fizika-riyaziyyat elmləri seriyası, no. 3, pp. 55-64, 2011. [On line]. Available: https://bit.ly/38tVJfV

S.R. El-Shabrawy and S. H. Abu-Janah, “Spectra of the generalized difference operator on the sequence spaces and bv0 and h”, Linear and multilinear algebra, vol. 66, no. 1, pp. 1691—1708, Aug. 2017, doi: 10.1080/03081087.2017.1369492.

S. Goldberg, Unbounded linear operators: theory and applications, New York, NY: McGraw Hill, 1966.

K. Knopp, Theory and application of infinite series, Glasgow: Blackie & Son Ltd., 1954. [On line]. Available: https://bit.ly/30MSSfC

A. Paul and B. C. Tripathy, “The spectrum of the operator D (r, 0, 0, s) over the sequence spaces lp and bvp”, Hacettepe journal of mathematics and statistics, vol. 43, no. 3, pp. 425-434, 2014. [On line]. Available: https://bit.ly/36oyUch

A. Paul and B. C. Tripathy, “The Spectrum of the operator D(r, 0, 0, s) over the sequence space bv0”, Georgian mathematical journal, vol. 22, no. 3, pp. 421-426, Jul. 2015, doi: 10.1515/gmj-2015-0035.

J. Sertić, D. Kozak, and R. Scitovski, “LU-decomposition for solving sparse band matrix systems and its application in thin plate bending”, Transactions of FAMENA, vol. 32, no. 2, pp. 41-48, 2008. [On line]. Available: https://bit.ly/2NSDSHL

P. D. Srivastava and S. Kumar, “The fine spectrum of the generalized difference operator Δν over the sequence space c0”, Communications in mathematical analysis, vol. 6, no. 1, pp. 8-21, 2009.

B. C. Tripathy and P. Saikia, “On the spectrum of the Cesàro operator C1 on bv ∩ l∞”, Mathematica slovaca, vol. 63, no. 3, pp. 563-572, 2013, doi: 10.2478/s12175-013-0118-1.

B. C. Tripathy and A. Paul, “The Spectrum of the operator D(r, 0, 0, s) over the sequence spaces c0 and c”, Kyungpook mathematical journal, vol. 53, no. 2, pp. 247—256, 2013. [On line]. Available: https://bit.ly/36fnmYJ

B. C. Tripathy and R. Das, “Spectra of the Rhaly operator on the sequence space bv0 ∩ l∞”, Boletim da sociedade paranaense de matemática, vol. 32, no. 1, pp. 263-275, Jan. 2014, doi: 10.5269/bspm.v32i1.19490.

B. C. Tripathy and R. Das, “Spectrum and fine spectrum of the upper triangular matrix U (r, s) over the sequence space cs”, Proyecciones (Antofagasta, On line), vol. 34, no. 2, pp. 107-125, Jun. 2015, doi: 10.4067/S0716-09172015000200001.

B. C. Tripathy and R. Das, “Fine spectrum of the upper triangular matrix U (r, 0, 0, s) over the squence spaces c0 and c”, Proyecciones (Antofagasta, On line), vol. 37, no. 1, pp. 85-101, 2018, doi: 10.4067/S0716-09172018000100085.

M. Varah, “On the solution of block-tridiagonal systems arising from certain finite-difference equations”, Mathematics of computation, vol. 26, no. 120, pp. 859-868, Oct. 1972, doi: 10.2307/2005868.

M. Yıldırım and N. Durna, “The spectrum and some subdivisions of the spectrum of discrete generalized Cesaro operators on lp, (1 < p < ∞)”, Journal of inequalities and applications, Aug. 2017 (193), pp. 1-13, (2017), doi: 10.1186/s13660-017-1464-2.

A. Wilansky, Summability through functional analysis, Amsterdam: North Holland, 1984.

*Proyecciones (Antofagasta, On line)*, vol. 39, no. 1, pp. 51-71, Feb. 2020.

Copyright (c) 2020 Nuh Durna

This work is licensed under a Creative Commons Attribution 4.0 International License.