The b-radical of generalized alternative b-algebras II

Keywords: b-algebras, b-radical, Generalized alternative b-algebras II

Abstract

We prove that if (U, ω) is a finite dimensional generalized alternative b-algebra II over a field F of characteristic different from 2 and 3, then rad(U) = R(U) ⋂ (bar(U))3.

References

M. Couto and H. Guzzo, “The radical in alternative baric algebras”, Archiv der mathematik, vol. 75, no. 3, pp. 178-187, Sep. 2000, doi: 10.1007/s000130050490.

I. Etherington, “On non-associative combinations”, Proceedings of the royal society of Edinburgh, vol. 59, pp. 153-162, 1940, doi: 10.1017/s0370164600012244.

B. Ferreira, H. Guzzo and J. Ferreira, “The Wedderburn b-decomposition for a class of almost alternative baric algebra”, Asian-european journal of mathematics, vol. 8, no. 1, 2015, doi: 10.1142/S1793557115500060.

B. Ferreira and R. Ferreira, “The Wedderburn b-decomposition for alternative baric algebras”, Mathematische gesellschaft in Hamburg, Vol. 37, pp. 13-25, 2017.

H. Guzzo, “The bar-radical of baric algebras”, Archiv der mathematik, vol. 67, no. 2, pp. 106–118, Aug. 1996, doi: 10.1007/BF01268924

E. Kleinfeld, “Generalization of alternative rings, II”, Journal of algebra, vol. 18, no. 2, pp. 326-339, Jun. 1971, doi: 10.1016/0021-8693(71)90063-9.

R. Schafer, An introduction to nonassociative algebras. New York: Academic Press, 1966.

H. Smith, “The Wedderburn principal theorem for a generalization of alternative algebras”, Transactions of the American mathematical society, vol. 198, pp. 139-154, 1974, doi: 10.1090/S0002-9947-1974-0352187-6.

H. Smith, “The Wedderburn principal theorem for generalized alternative algebras. I”, Transactions of the American mathematical society, vol. 212, pp. 139-148, 1975, doi: 10.1090/S0002-9947-1975-0376796-4.

Published
2019-12-16
How to Cite
[1]
B. L. M. Ferreira, “The b-radical of generalized alternative b-algebras II”, Proyecciones (Antofagasta, On line), vol. 38, no. 5, pp. 969-979, Dec. 2019.
Section
Artículos