On semi-open sets and Feebly open sets in generalized topological spaces
DOI:
https://doi.org/10.22199/issn.0717-6279-2019-05-0057Keywords:
Generalized topological spaces, Semi-open sets, Feeblyopen set, Semi-continuous mappings, Feebly-continuous mappings, Separation axiomsAbstract
In this paper, we introduce the notion of semi-open sets and feebly open sets in generalized topological spaces. Several properties of these notions are discussed. Also this paper considers (semi and feebly)-separation axioms for generalized topological spaces. We further investigate (semi-continuous, feebly-continuous, almost open)-functions in generalized topological spaces.
References
D. Cameron, “Properties of S-closed spaces”, Proceedings of the American mathematical society, vol. 72, no. 3, pp. 581–586, Mar. 1978, doi: 10.1090/S0002-9939-1978-0514999-4.
Á. Császár, “Generalized open sets”, Acta mathematica hungarica, vol. 75, no. 1-2, pp. 65–87, 1997, doi: 10.1023/A:1006582718102.
Á. Császár, “Generalized topology, generized continuity”, Acta mathematica hungarica, vol. 96, no. 4, pp. 351–357, 2002, doi: 10.1023/A:1019713018007.
Á. Császár, “γ-connected sets”, Acta mathematica hungarica, vol. 101, no. 4, pp. 273–279, 2003, doi: 10.1023/B:AMHU.0000004939.57085.9e.
Á. Császár, “Product of generalized topologies”, Acta mathematica hungarica, vol. 123, no. 1-2, pp. 127-132, 2009, doi: 10.1007/s10474-008-8074-x.
Á. Császár, “Generalized open sets in generalized topologies”, Acta mathematica hungarica, vol. 106, no. 1-2, pp. 53-66, 2009, doi: 10.1007/s10474-005-0005-5.
S. Greenwood, and I. L. Reilly, “On feebly closed mappings”, Indian journal of pure and applied mathematics, vol. 17, no. 9, pp. 1101-1105, 1986. [On line]. Available: https://bit.ly/35oH4kW
T. Hamlett, “A correction to the paper ‘Semi-open sets and semicontinuity in topological spaces’ by Norman Levine”, Proceedings of the American mathematical society, vol. 49, no. 2, pp. 458–460, Jun. 1975, doi: 10.2307/2040665.
D. Janković and I. Reilly, “On semi separation”, Indian journal of pure and applied mathematics, vol. 16, no. 9, pp. 957-964, 1985. [On line]. Available: https://bit.ly/2Eh6Yeq
N. Levine, “Semi-open sets and semi-continuity in topological spaces”, The American mathematical monthly, vol. 70, no. 1, pp. 36-41, Jan. 1963, doi: 10.2307/2312781.
S. Maheshwari, and U. Tapi, “On α-irresolute mappings”, Analele universităţii din Timişoara. Seria matematică-informatică, vol. 16, pp. 173—177, 1978.
W. Min, “Remarks on separation axioms on generalized topological space”, Chungcheong mathematical society, vol. 23, no. 2, pp. 293-298, June 2010. [On line]. Available: https://bit.ly/2YMKlIx
W. Min, “Remark on (δ − δ0)-continuity in generalized topological spaces”, Acta mathematica hungarica, vol. 129, no. 4, pp. 350-356, 2010, doi: 10.1007/s10474-010-0036-4.
T. Noiri, “Semi-continuity and weak-continuity”, Czechoslovak mathematical journal, vol. 31, no. 2, pp. 314-321, 1981. [On line]. Available: https://bit.ly/2Pm7Gxl
B. Tyagi, H. Chauhan, and R. Choudhary, “On γ -connected sets”, International journal of computer applications, vol. 113, no. 16, pp. 1–3, Mar. 2015, doi: 10.5120/19907-2011.
B. Tyagi and H. Chauhan, “A remark on extremally μ-disconnected generalized topological spaces”, Mathematics for application, vol. 5, no. 1, pp. 83–90, Jul. 2016, doi: 10.13164/ma.2016.06.
B. Tyagi and H. Chauhan, “On generalized closed sets in generalized topological spaces,” Cubo (Temuco), vol. 18, no. 1, pp. 27–45, 2016, doi: 10.4067/S0719-06462016000100003.
B. Tyagi, H. Chauhan, “On some separation axioms in generalized topological spaces”, Questions and answers in general topology, vol. 36, no. 1, pp. 9-29, 2018.
B. Tyagi and R. Choudhary, “On product of connected and locally connected generalized topological spaces”, Communicated.
B. Tyagi, H. Chauhan, “cμ-cμ-connectedness and V -θ-connectedness in generalized topological spaces”, Analele Universitatii din Oradea. Fascicola Matematica, vol. 25, no. 2, pp. 99-106, 2018.