Pebbling on zig-zag chain graph of n odd cycles

Authors

DOI:

https://doi.org/10.22199/issn.0717-6279-2019-03-0038

Keywords:

Graph pebbling, Zig-zag chain graph

Abstract

Given a distribution of pebbles on the vertices of a connected graph G, a pebbling move on G consists of removing two pebbles from one vertex and placing one pebble on an adjacent vertex. The pebbling number of G, f (G), is the least n such that any distribution of n pebbles on G allows one pebble to be reached to any specified, but an arbitrary vertex. Similarly, the t−pebbling number of G, ft(G), is the least m such that from any distribution of m pebbles, we can move t pebbles to any specified, but an arbitrary vertex. In this paper, we determine the pebbling number, and the t−pebbling number of the zigzag chain graph of n copies of odd cycles.

Downloads

Download data is not yet available.

Author Biographies

  • A. Lourdusamy, St. Xavier’s College (Autonomous).

    Department of Mathematics.

  • J. Jenifer Steffi, St. Xaviers College (Autonomous).

    Department of Mathematics.

References

G. Chartrand and L. Lesniak, Graphs & digraphs, 4th ed. Boca Raton, FL: CRC Press, 2004.

F. Chung, “Pebbling in hypercubes”, SIAM Journal on Discrete Mathematics, vol. 2, no. 4, pp. 467–472, Nov. 1989, doi:10.1137/0402041.

P. Lemke and D. Kleitman, “An addition theorem on the integers modulo n”, Journal of Number Theory, vol. 31, no. 3, pp. 335–345, Mar. 1989, doi: 10.1016/0022-314X(89)90077-2.

D. Moews, “Pebbling graphs”, Journal of Combinatorial Theory, Series B, vol. 55, no. 2, pp. 244–252, 1992, doi: 10.1016/0095-8956(92)90043-W.

L. Pachter, H. Snevily, and B. Voxman, “On pebbling graphs”, Congressus Numerantium, vol. 107, pp. 65-80, 1995.

D. S. Herscovici and A. W. Higgins, “The pebbling number of C5 × C5”, Discrete Mathematics, vol. 187, no. 1-3, pp. 123–135, Jun. 1998, doi: 10.1016/S0012-365X(97)00229-X.

G. Hurlbert, The Graph Pebbling Page. [Online]. Available: http://mingus.la.asu.edu/~hurlbert/pebbling/pebb.html

C. Cusack et al., Algoraph. [Online]. Available: http://algoraph.hope.edu

D. Herscovici, “Grahams pebbling conjecture on products of cycles”, Journal of Graph Theory, vol. 42, no. 2, pp. 141–154, Jan. 2003, doi: 10.1002/jgt.10080.

A. Lourdusamy, “t-pebbling the graphs of diameter two”, Acta Ciencia Indica, Mathematics, vol.29, no. 3, pp. 465-470, 2003.

A. Lourdusamy, “t-pebbling the product of graphs”, Acta Ciencia Indica, Mathematics, vol. 32, no. 1, pp. 171-176, 2006.

A. Lourdusamy and A. Tharani, “On t-pebbling graphs”, Utilitas Mathematica, vol. 87, pp. 331-342, 2012.

A. Lourdusamy, S. Jeyaseelan and A. Tharani, “t-pebbling the product of fan graphs and the product of wheel graphs”, International Mathematical Forum, vol. 4, no. 32, pp. 1573-1585, 2009. [On line]. Available: http://bit.ly/2YZI2QA

A. Lourdusamy and J. Steffi, “The pebbling number of zig-zag chain graph of even cycles”, Sciencia Acta Xaveriana, vol. 8, no. 1, pp.49-62, 2017.

A. Lourdusamy and J. Steffi, “The 2t-Pebbling property on the zig-zag chain graph of n odd cycles”, International Journal of pure and applied mathematics, vol. 117, special issue, no. 14, pp. 200-218, 2017. [On line], Available: http://bit.ly/2MT0LLq

Downloads

Published

2019-08-14

Issue

Section

Artículos

How to Cite

[1]
“Pebbling on zig-zag chain graph of n odd cycles”, Proyecciones (Antofagasta, On line), vol. 38, no. 3, pp. 597–615, Aug. 2019, doi: 10.22199/issn.0717-6279-2019-03-0038.