Non-linear new product A*B-B*A derivations on *-algebras

Authors

DOI:

https://doi.org/10.22199/issn.0717-6279-2020-02-0029

Keywords:

New product derivation, Prime ∗-algebra, Additive map

Abstract

Let A be a prime ?-algebra with unit I and a nontrivial projection. Then the map ? : A ? A satisfies in the following condition ?(A ? B) = ?(A) ? B + A ? ?(B) where A? B = A?B ?B?A for all A, B ? A, is additive. Moreover, if ?(?I) is self-adjoint operator for ? ? {1, i} then ? is a ?-derivation.

Author Biographies

Ali Taghavi, University of Mazandaran.

Dept.of Mathematics, Faculty of Mathematical Sciences.

M. Razeghi, University of Mazandaran.

Dept.of Mathematics, Faculty of Mathematical Sciences.

References

Z. Bai and S. Du, “The structure of nonlinear lie derivation on von Neumann algebras”, Linear algebra and its applications, vol. 436, no. 7, pp. 2701–2708, Apr. 2012, doi: 10.1016/j.laa.2011.11.009.

E. Christensen, “Derivations of nest algebras”, Mathematische annalen, vol. 229, no. 2, pp. 155–161, Jun. 1977, doi: 10.1007/BF01351601.

J. Cui and C.-K. Li, “Maps preserving product XY-YX∗ on factor von Neumann algebras”, Linear algebra and its applications, vol. 431, no. 5-7, pp. 833–842, 2009, doi: 10.1016/j.laa.2009.03.036.

J. Dixmier, C*-algebras, vol. 15. Amsterdam: North-Holland Publ. Co., 1977. [On line]. Available: https://bit.ly/2SenaED

C. Li, F. Zhao, and Q. Chen, “Nonlinear maps preserving product X∗Y + Y∗X on von Neumann algebras”, Bulletin of the iranian mathematical society, vol. 44, no. 3, pp. 729–738, Jun. 2018, Doi: 10.1007/s41980-018-0048-3.

R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras, vol. 1. New York: Academic Press, 1983. [On line]. Available: https://bit.ly/3f0Wm4J

R. V. Kadison and R. Ringrose, Fundamentals of the theory of operator algebras, vol. 2, New York: Academic Press, 1986. [On line]. Available: https://bit.ly/3aLf0dz

C. Li, F. Lu, and X. Fang, “Non-linear ξ-Jordan *-derivations on von Neumann algebras”, Linear and multilinear algebra, vol. 62, no. 4, pp. 466–473, Apr. 2013, doi: 10.1080/03081087.2013.780603.

C. Li, F. Lu, and X. Fang, “Nonlinear mappings preserving product XY + YX∗ on factor von Neumann algebras”, Linear algebra and its applications, vol. 438, no. 5, pp. 2339–2345, Mar. 2013, doi: 10.1016/j.laa.2012.10.015.

C. R. Miers, “Lie homomorphisms of operator algebras”, Pacific journal of mathematics. vol. 38, no. 3, pp. 717—735, 1971. [On line]. Available: https://bit.ly/3bPIg43

L. Molnár, “A condition for a subspace of B(H) to be an ideal”, Linear algebra and its applications, vol. 235, pp. 229–234, Mar. 1996. doi: 10.1016/0024-3795(94)00143-X.

S. Sakai, “Derivations of W∗ -Algebras”, The annals of mathematics, vol. 83, no. 2, pp. 273–279, Mar. 1966, doi: 10.2307/1970432.

P. Šemrl, “Additive derivations of some operator algebra”, Illinois journal of mathematics, vol. 35, no. 2, pp. 234–240, Jun. 1991, doi: 10.1215/ijm/1255987893.

P. Šemrl, “Ring derivations on standard operator algebras”, Journal of functional analysis, vol. 112, no. 2, pp. 318–324, Mar. 1993, doi: 10.1006/jfan.1993.1035.

A. Taghavi, V. Darvish, and H. Rohi, “Additivity of maps preserving products AP ±P A∗ on C∗-algebras”, Mathematica slovaca, vol. 67, no. 1, pp. 213-220, Feb. 2017, doi: 10.1515/ms-2016-0260.

A. Taghavi, H. Rohi, and V. Darvish, “Non-linear *-Jordan derivations on von Neumann algebras”,” Linear and Multilinear Algebra, vol. 64, no. 3, pp. 426–439, May 2015, doi: 10.1080/03081087.2015.1043855.

W. Yu and J. Zhang, “Nonlinear ∗-lie derivations on factor von Neumann algebras”, Linear algebra and its applications, vol. 437, no. 8, pp. 1979–1991, Oct. 2012, doi: 10.1016/j.laa.2012.05.032.

F. Zhang, “Nonlinear skew Jordan derivable maps on factor von Neumann algebras”, Linear and multilinear algebra, vol. 64, no. 10, pp. 2090–2103, Jan. 2016, doi: 10.1080/03081087.2016.1139035.

Published

2020-04-29

How to Cite

[1]
A. Taghavi and M. . Razeghi, “Non-linear new product A*B-B*A derivations on *-algebras”, Proyecciones (Antofagasta, On line), vol. 39, no. 2, pp. 467-479, Apr. 2020.

Issue

Section

Artículos