On minimal ?co-open sets

Authors

DOI:

https://doi.org/10.22199/issn.0717-6279-2020-02-0026

Keywords:

On minimal λco-open sets, λco-locally finite space

Abstract

We introduce and discuss the notions of minimal ?co-open sets in topological spaces. We establish some of it basic fundamental properties of minimal ?co-open. We show that the notions of minimal open sets and minimal ?co-open are independent and finally we obtain some application of a minimal ?co-open sets.

Author Biographies

Ennis Rafael Rosas Rodriguez, Universidad de la Costa.

Dept. de Ciencias Naturales y Exactas.

Sarhad Namiq, University of Garmian.

Mathematics Dept.

References

B. Ahmad and S. Hussain. “Properties of γ-operations on topological spaces”, Aligarh bulletin of mathematics, vol. 22, no. 1, pp. 45-51, 2003.

C. Carpintero, E. Rosas, M. Salas-Brown, and J. Sanabria, “Minimal open sets on generalized topological space”, Proyecciones (Antofagasta. On line), vol. 36, no. 4, pp. 739–751, Dec. 2017, doi: 10.4067/S0716-09172017000400739.

S. Hussain and B. Ahmad, “On minimal γ-open sets”, European journal of pure applied mathematics, vol. 2, no. 3, pp. 338-351, 2009. [On line]. Available: https://bit.ly/2YaO0S5

S. Kasahara, “Operation-compact spaces”, Mathematica japonica, vol. 24, no. 1, pp. 97-105, 1979.

A. B. Khalaf and S. F. Namiq, "New types of continuity and separation axiom based operation in topological spaces", MSc Thesis, University of Sulaimani, 2011.

A. B. Khalaf and S. F. Namiq, “Generalized λ-closed sets and (λ, γ)∗-continuous functions”, International journal of scientific engineering research, vol. 3, no. 12, Dec. 2012. [On line]. Available: https://bit.ly/2zHdtsh

A. B. Khalaf and S. F. Namiq, “λ-open sets and λ-separation axioms in topological spaces”, Journal of advanced studies in topology, vol. 4, no. 1, pp. 150-158, 2013, doi: 10.20454/jast.2013.528.

A. B. Khalaf and S. F. Namiq, “Generalized λ-closed sets and (λ, γ)∗-continuous function”, Journal of Garmyan University, vol. 4, pp. 1-17, Jul. 2017, doi: 10.24271/garmian.121 .

A. B. Khalaf and S. F. Namiq, “λβc-connected spaces and λβc components”, Journal of Garmyan University, vol. 4, pp. 73–85, Jul. 2017, doi: 10.24271/garmian.126.

A. B. Khalaf, H. M. Darwesh, and S. F. Namiq, “λc-connected spaces via λc -open sets”, Journal of Garmyan University, vol. 1, no. 12, pp. 15–29, Mar. 2017, doi: 10.24271/garmian.112.3.

S. F. Namiq, “ON Minimal λ∗-open sets”, International journal of scientific engineering research, vol. 5, no. 10, pp. 487-491, Oct. 2014. [On line]. Available: https://bit.ly/2VJsG4j

N. Levine, “Semi-open sets and semi-continuity in topological spaces”, The american mathematical monthly, vol. 70, no. 1, pp. 36–41, Jan. 1963, doi: 10.1080/00029890.1963.11990039.

F. Nakaoka and N. Oda, “Some applications of minimal open sets”, International journal of mathematics and mathematical sciences, vol. 27, no. 8, pp. 471–476, 2001, doi: 10.1155/S0161171201006482.

S. F. Namiq, “λ∗ − R0 and λ∗ − R1 spaces”, Journal of Garmyan University, vol. 4, no. 3, 2014.

S. F. Namiq, “λβc-open sets and topological properties”, Journal of Garmyan University, vol. 4, pp. 18-42, Jul. 2017, doi: 10.24271/garmian.122.

S. Namiq, “Contra (λ, γ)*-continuous functions”, Journal of Garmian University, vol. 4, pp. 86–103, Jul. 2017, doi: 10.24271/garmian.127.

S. F. Namiq, “Generalized λc-open set”, International journal of scientific engineering research, vol. 8, no. 6, pp. 2161-2174, Jun. 2017. [On line]. Available: https://bit.ly/3cWYlVI

S. F. Namiq, “λsc-open sets and topological properties”, Journal of Garmyan University, 2014. [On line]. Available: https://bit.ly/2SgIOZ7

S. F. Namiq, “λc-separation axioms via λc-open sets”, International journal of scientific engineering research, vol. 8, no. 5, pp. 17-33, May 2017. [On line]. Available: https://bit.ly/35k6e55

S. F. Namiq, “λsc-connected spaces via λsc-open sets”, Journal of Garmyan University, vol. 4, no. 1, pp. 1- 14, Jan. 2017, doi: 10.24271/garmian.112.2

H. M. Darwesh, S. F. Namiq, and W. K. Kadir, “Maximal λc open sets,” in ICNS 2016, 2016, pp. 3–8. [On line]. Available: https://bit.ly/3d7KEnh

S. F. Namiq, “λ-Connected Spaces Via λ-Open Sets”, Journal of Garmyan University, vol. 7, pp. 165-178, 2015.

S. F. Namiq, “On minimal λαc-open sets”, submit.

S. F. Namiq, “λco-open sets and topological properties”, submit.

S. F. Namiq, “λrc-open sets and topological properties”, submit.

H. Ogata, “Operations on topological spaces and associated topology”, Mathematica japonica, vol. 36, no. 1, pp. 175-184, 1991.

E. Rosas and S. F. Namiq, “On minimal λrc-open sets”, Italian journal of pure and applied mathematics, no. 43, pp. 868-877, 2020. [On line]. Available https://bit.ly/3bP82pk

J. N. Sharma and J. P. Chauhan, Topology (General and algebraic). Krishna Prakashan Media, 2011.

M. H. Stone, “Applications of the theory of Boolean rings to general topology”, Transactions of the American Mathematical Society, vol. 41, no. 3, pp. 375–375, Mar. 1937, doi: 10.1090/S0002-9947-1937-1501905-7.

Published

2020-04-29

How to Cite

[1]
E. R. Rosas Rodriguez and S. Namiq, “On minimal ?co-open sets”, Proyecciones (Antofagasta, On line), vol. 39, no. 2, pp. 421-433, Apr. 2020.

Issue

Section

Artículos

Most read articles by the same author(s)