I-statistical limit points and I-statistical cluster points

Keywords: I-statistical convergence, I-statistical limit point, I-statistical cluster point, I-asymptotic density, I- statistical boundedness

Abstract

In this paper we have extended the notion of statistical limit point as introduced by Fridy[8] to I-statistical limit point of sequences of real numbers and studied some basic properties of the set of all Istatistical limit points and I-statistical cluster points of real sequences including their interrelationship. Also introducing additive property of I-asymptotic density zero sets we establish I-statistical analogue of some completeness theorems of R.

Author Biographies

Prasanta Malik, The University of Burdwan.
Department of Mathematics.
Argha Ghosh, The University of Burdwan.
Department of Mathematics.
Samiran Das, The University of Burdwan.
Department of Mathematics.

References

J. Connor, J. Fridy, and J. Kline, “Statistically pre-Cauchy sequences”, Analysis, vol. 14, no. 4, pp. 311-317, 1994, doi: 10.1524/anly.1994.14.4.311.

J. Connor, “R-type summability methods, Cauchy criteria, P-sets and statistical convergence”, Proceedings of the American mathematical society, vol. 115, no. 2, pp. 319-327, 1992, doi: 10.1090/S0002-9939-1992-1095221-7.

J. Connor, “The statistical and strong P-Cesàro convergence of sequences”, Analysis, vol. 8, no. 1-2, pp. 47-63, 1988, doi: 10.1524/anly.1988.8.12.47.

P. Das, E. Savas and S. Ghosal, “On generalizations of certain summability methods using ideals”, Applied mathematics letters, vol. 24, no. 4, pp. 1509-1514, Sep. 2011, doi: 10.1016/j.aml.2011.03.036.

P. Das and E. Savas, “On I-statistically pre-Cauchy sequences”, Taiwanese journal of mathematics, vol. 18, no. 1, pp. 115-126, 2014, doi: 10.11650/tjm.18.2014.3157.

K. Demirci, “I-limit superior and limit inferior”, Mathematical communications, vol. 6, no. 2, pp. 165-172, 2001. [On line]. Available: https://bit.ly/2MgNKdF

J. Fridy, “On statistical convergence”, Analysis, vol. 5, no. 4, pp. 301-313, 1985, 10.1524/anly.1985.5.4.301.

J. Fridy, “Statistical limit points”, Proceedings of the American mathematical society, vol. 118, no. 4, pp. 1187-1192, 1993, doi: 10.1090/S0002-9939-1993-1181163-6.

J. Fridy and C. Orhan, “Statistical limit superior and limit inferior”, Proceedings of the American mathematical society, vol. 125, no. 12, pp. 3625-3631, 1997, doi: 10.1090/S0002-9939-97-04000-8.

B. Lahiri, P. Das, “I and I∗-convergence in topological spaces”, Mathematica bohemica, vol. 130, no. 2, pp. 153-160, 2005. [On line]. Available: https://bit.ly/38L4xPp.

B. Lahiri, P. Das, “I and I∗-convergence of nets”, Real analysis exchange, vol. 33, no. 2, pp. 431-442, 2007. [On line]. Available: https://bit.ly/2swO4Ok

H. Fast, “Sur la convergence statistique”, Colloquium mathematicae, vol. 2, no. 3-4, pp. 241-244, 1951. [On line]. Available: https://bit.ly/2RZ3hlZ

P. Kostyrko, Wilczyński and T. Šalát, “I-convergence”, Real analysis exchange, vol. 26, no. 2, pp. 669-685, 2000. [On line]. Available: https://bit.ly/2qZJ2th

P. Kostyrko, M. Mačaj, T. Šalát, and M. Sleziak, “I-convergence and external, I-limit points”, Mathematica slovaca, vol. 55, no. 4, pp. 443-454, 2005. [On line]. Available: https://bit.ly/2Ptjhea

M. Mursaleen, S. Mohiuddine and O. Edely, “On ideal convergence of double sequences in intuitionistic fuzzy normed spaces”, Computers & mathematics with applications, vol. 59, no. 2, pp. 603-611, Jan. 2010, doi: 10.1016/j.camwa.2009.11.002.

M. Mursaleen and S. Mohiuddine, “On ideal convergence of double sequences in probabilistic normed spaces”, Mathematical reports, vol. 12, no. 4, pp. 359-371, 2010.

M. Mursaleen and A. Alotaibi, “On I-convergence in random 2-normed spaces”, Mathematica slovaca, vol. 61, no. 6, pp. 933-940, Dec. 2011, doi: 10.2478/s12175-011-0059-5.

M. Mursaleen and S. Mohiuddine, “On ideal convergence in probabilistic normed spaces”, Mathematica slovaca, vol. 62, no. 1, pp. 49-62, Feb. 2012, doi: 10.2478/s12175-011-0071-9.

M. Mursaleen, D. Debnath and D. Rakshit, “I-statistical limit superior and I- statistical limit inferior”, Filomat, vol. 31, no. 7, pp. 2103-2108, 2017. [On line]. Available: https://bit.ly/2M3giXT

I. Niven and H. Zuckerman, An introduction to the theory of numbers, 4th ed. New York: Wiley, 1980.

S. Pehlivan, A. Güncan and M. A. Mamedov, “Statistical cluster points of sequences in finite dimensional spaces,” Czechoslovak mathematical journal, vol. 54, no. 1, pp. 95–102, Mar. 2004, doi: 10.1023/B:CMAJ.0000027250.19041.72.

T. Šalát, “On statistically convergent sequences of real numbers”, Mathematica slovaca, vol. 30, no. 2, pp. 139-150, 1980. [On line]. Available: https://bit.ly/34uzcNs

E. Savas and P. Das, “A generalized statistical convergence via ideals”, Applied mathematics letters, vol. 24, no. 6, pp. 826-830, Jun. 2011, doi: 10.1016/j.aml.2010.12.022.

I. Schoenberg, “The integrability of certain functions and related summability methods”, The American mathematical monthly, vol. 66, no. 5, pp. 361-375, 1959, doi: 10.1080/00029890.1959.11989303.

H. Steinhus, “Sur la convergence ordinaire et la convergence asymptotique”, Colloquium mathematicum, vol. 2, pp. 73-74, 1951.

Published
2019-12-17
How to Cite
[1]
P. Malik, A. Ghosh, and S. Das, “I-statistical limit points and I-statistical cluster points”, Proyecciones (Antofagasta, On line), vol. 38, no. 5, pp. 1011-1026, Dec. 2019.
Section
Artículos