On strongly faint e-continuous functions


  • Miguel Caldas Cueva Universidade Federal Fluminense.
  • Saeid Jafari College of Vestsjaelland South.




Topological spaces, e-open sets, Strong θ-continuity, Strongly faint e-continuity.


A new class of functions, called strongly faint e-continuous function, has been defined and studied. Relationships among strongly faint e-continuous functions and econnected spaces, e-normal spaces and e-compact spaces are investigated. Furthermore, the relationships between strongly faint e-continuous functions and graphs are also investigated.

Author Biography

Miguel Caldas Cueva, Universidade Federal Fluminense.

Departamento de Matemática Aplicada.


[1] M. E. Abd El-Monsef, S. N. Ei-Deeb and R. A. Mahmoud, ?-open sets and ?-continuous mappings, Bull. Fac. Assiut Univ. 12, pp. 77- 90, (1983).

[2] M. Caldas, On fantly e-continuous functions. Submitted.

[3] M. Caldas, S. Jafari and T. Noiri, Some separation axioms via modified ?-open, Bull. of the Iranian Math. Soc., 29(2), pp. 1-12, (2003).

[4] E. Ekici, On e-open sets, DP?-sets and DPC?-sets and decompositions of continuity. The Arabian J. for Sci. and Eng., 33 (2A), pp. 269-282, (2008).

[5] E. Ekici, On a-open sets, A?-sets and Decompositions of continuity and super continuity, Annales Univ. Sci. Budapest, 51, pp. 39-51, (2008).

[6] E. Ekici, New forms of contra continuity, Carpathian J. Math., 24 (1), pp. 37-45, (2008).

[7] E. Ekici, On e?-open sets and (D, S)?-sets, Math. Moravica, Vol. 13(1), pp. 29-36, (2009).

[8] E. Ekici, Some generalizations of almost contra-super-continuity, Filomat, 21 (2), pp. 31-44, (2007).

[9] E. Ekici, A note on a-open sets and e?-sets, Filomat, 21 (1), pp. 89-96, (2008).

[10] A.A. El-Atik, Study of some types of mappings on topological spaces, Bull.Masters. Thesis, Faculty of Science, Tanta University, Egypt, (1997).

[11] S. Jafari, Some properties of quasi ?-continuous functions, Far East J. Math. Soc., 6, pp. 689-696, (1998).

[12] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 68, pp. 44-46, (1961).

[13] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19, pp. 89-96, (1970).

[14] P. E. Long and L. L. Herrington, The T?-topology and faintly continuous functions, Kyungpook Math. J., 22, pp. 7-14, (1982).

[15] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53, pp. 47-53, (1982).

[16] A. A. Nasef , Recent progress in the theory of faint continuity, Mathematical and Computer Modelling, 49, pp. 536-541, (2009).

[17] A. A. Nasef, strongly ?-irresolute functions, J. Natur. Sci. Math., 36, pp. 199-206, (1996).

[18] A. A. Nasef and T. Noiri, Strong forms of faint continuity, Mem. Fac. Sci. Kochi Univ. Ser. A. Math, 19, pp. 21-28, (1998).

[19] O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15, pp. 961-970, (1965).

[20] T. Noiri, On ?-continuous functions, J. Korean Math. Soc., 16, pp. 161-166, (1980).

[21] S. Raychaudhuri and M. N. Mukherjee, On ?-almost continuity and ?-preopen sets, Bull. Inst. Math. Acad. Sinica 21, pp. 357-366, (1993).

[22] S. Sinharoy and S. Bandyopadhyay, On ?-completely regular and locally ?-H-closed spaces, Bull. Cal. Math. Soc., 87, pp. 19-28, (1995).

[23] N. V. Velicko, H-closed topological spaces, Mat. Sb., 70 (1966), 98- 112; English transl., in Amer. Math. Soc. Transl., 78, pp. 103-118, (1968).



How to Cite

M. Caldas Cueva and S. Jafari, “On strongly faint e-continuous functions”, Proyecciones (Antofagasta, On line), vol. 30, no. 1, pp. 29-41, May 2011.