Jordan triple derivation on alternative rings.

Authors

  • Ruth N. Ferreira Universidade Tecnológica Federal do Paraná.
  • Bruno L. M. Ferreira Universidade Tecnológica Federal do Paraná.

Keywords:

Alternative ring, Idempotent element, Maps, Additivity

Abstract

Let D be a mapping from an alternative ring R into itself satisfying D(a · ba) = D(a) · ba+  a · D(b)a +a · bD(a) for all a, b ? R. Under some conditions on R, we show that D is additive.

References

B. L. M. Ferreira and J. C. M. Ferreira, Additivity of n-Multiplicative Maps on Alternative Rings, Communications In Algebra 44, pp. 1557-1568, (2016).

B. L. M. Ferreira, J. C. M. Ferreira and H. Guzzo Jr., Jordan Maps on Alternative Algebras, JP Journal of Algebra, Number Theory and Applications 31, pp. 129-142, (2013).

B. L. M. Ferreira, J. C. M. Ferreira and H. Guzzo Jr., Jordan Triple Elementary Maps on Alternative Rings, Extracta Mathematicae 29,pp. 1-18, (2014).

B. L. M. Ferreira, J. C. M. Ferreira and H. Guzzo Jr., Jordan Triple Maps of Alternative Algebras, JP Journal of Algebra, Number Theory and Applications 33, pp. 25-33, (2014).

B. L. M. Ferreira and R. Nascimento, Derivable Maps on Alternative Rings, Recen 16, pp. 9-15, (2014).

R. N. Ferreira and B. L. M. Ferreira, Jordan Derivation on Alternative Rings, International Journal of Mathematics, Game Theory and Algebra 25, pp. 435-445, (2017).

M. Slater, Prime Alternative Rings, I, Journal of Algebra 15, pp. 229-243, (1970).

Published

2018-03-15

How to Cite

[1]
R. N. Ferreira and B. L. M. Ferreira, “Jordan triple derivation on alternative rings.”, Proyecciones (Antofagasta, On line), vol. 37, no. 1, pp. 171-180, Mar. 2018.

Issue

Section

Artículos

Most read articles by the same author(s)