Existence and multiplicity of solutions for systems of semilinear elliptic equations
DOI:
https://doi.org/10.22199/S07160917.1996.0001.00001Keywords:
Partial differential equations,Abstract
Downloads
Download data is not yet available.
References
[1] Agmon, S. and Douglis, A. and Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satifying general boundary conditions, Comm. Pure Appl. Math., 12 623-727, 1959.
[2] H. Amann, Nonlinear operators in ordered Banach Spaces and some applications to nonlinear boundary value pmblems. Lecture : Notes in Mathematics, 543 , 1-53, 1976.
[3] M.G. Crandall, An introduction to constructive aspects of bifurcation and the implicit function theorem, Application of bifurcation theory, edited by P. Rabinowitz, 1-33, 1977.
[4] D. de Figuereido and P.L.Lions and R.D.Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations, .J. Math. Pures et Appl., 61, 41-63, 1982.
[5] Choi, Y.S. and Hernández, Gastón Existence and Multiplicity of solutions for a Nonvariational Elliptic Problem, Journal of Mathematical Analysis and Its Applications 182 No.1, 189-249, 1994.
[6] Choi, Y.S. and Hernández, Gastón Existence of solutions in a singular biharmonic nonlinear problem. Proceeding of the Edinburgh Math. Soc. 36, 537-546, 1993.
[7] Choi, Y. S. and Hernández, Gastón Behavior of multiple solutions for systems of semilinear elliptic equations Submitted, 1995.
[8] Lions, P. L., On the existence of positive solutions of semilinear elliptic equations. SIAM Review, 24 No. 4", 441-467, 1982.
[9] McKenna, P.J. and Walter, W., On the Dirichlet Problem for Elliptic Systems. Applicable Analysis, 21, 207-224, 1986.
[10] P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations. CBMS Regional Conference Series in Mathematics 65, AMS, Providence, 1986.
[11] Shaker, A.W., On Symmetry in Elliptic Systems, Applicable Analysis, 41, 1-9, 1991.
[2] H. Amann, Nonlinear operators in ordered Banach Spaces and some applications to nonlinear boundary value pmblems. Lecture : Notes in Mathematics, 543 , 1-53, 1976.
[3] M.G. Crandall, An introduction to constructive aspects of bifurcation and the implicit function theorem, Application of bifurcation theory, edited by P. Rabinowitz, 1-33, 1977.
[4] D. de Figuereido and P.L.Lions and R.D.Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations, .J. Math. Pures et Appl., 61, 41-63, 1982.
[5] Choi, Y.S. and Hernández, Gastón Existence and Multiplicity of solutions for a Nonvariational Elliptic Problem, Journal of Mathematical Analysis and Its Applications 182 No.1, 189-249, 1994.
[6] Choi, Y.S. and Hernández, Gastón Existence of solutions in a singular biharmonic nonlinear problem. Proceeding of the Edinburgh Math. Soc. 36, 537-546, 1993.
[7] Choi, Y. S. and Hernández, Gastón Behavior of multiple solutions for systems of semilinear elliptic equations Submitted, 1995.
[8] Lions, P. L., On the existence of positive solutions of semilinear elliptic equations. SIAM Review, 24 No. 4", 441-467, 1982.
[9] McKenna, P.J. and Walter, W., On the Dirichlet Problem for Elliptic Systems. Applicable Analysis, 21, 207-224, 1986.
[10] P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations. CBMS Regional Conference Series in Mathematics 65, AMS, Providence, 1986.
[11] Shaker, A.W., On Symmetry in Elliptic Systems, Applicable Analysis, 41, 1-9, 1991.
Downloads
Published
2018-04-04
Issue
Section
Artículos
License
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
How to Cite
[1]
“Existence and multiplicity of solutions for systems of semilinear elliptic equations”, Proyecciones (Antofagasta, On line), vol. 15, no. 1, pp. 1–17, Apr. 2018, doi: 10.22199/S07160917.1996.0001.00001.