Local stability results on a model for typhoid fever with a core group


  • Jorge González-Guzmán Universidad Católica de Valparaíso.
  • Betsabé González-Yáñez Universidad Católica de Valparaíso.




Subpoblaciones, Liapunov, Fiebre tifoidea


A SIRS epidemiological model with two subpopulation and vital dynamics is analized. Both subpopulations are considered constant by assuming that the birth and the death rate are equal.  We analize the case where one subpopulation is a core, that is, a very infectious small group, responsible for a big fraction of the incidence. For this case a threshold is determined and the corresponding equilibrium points for the four dimensional system are shown to be locally stable by means of the classical Liapunov theorem. This system models the dynamics of typhoid fever, where the core is the group of food manipulators. Computer simulation are used to estimate the effect of vaccination on the population.

Author Biographies

Jorge González-Guzmán, Universidad Católica de Valparaíso.

Instituto de Matemática.

Betsabé González-Yáñez, Universidad Católica de Valparaíso.

Instituto de Matemática.


[1] Hethcote, H.; Yorke, J.: Gonorrhea: Transmission Dynamics and Control. Lecture Notes in Biomathematics 56.Springer Verlag, 1984

[2] Hethcote , H.: Qualitative analysis of conmnunicable disease models. Math. Biosc., 28, (1976), 335-356.

[3] Hethcote, H.: An immunization model for a heterogeneous population. Theoret. Population Biol., 14 (1978), 338-349.

[4] Thieme, H. R.: Global asymptotic stability in epidemic models. Equadiff, Lecture Notes in Math. 1017, Springe Verlag, Heildelberg, (1983), 608-615.

[5] Hethcote, H.; Thieme, H.: Stability of the Endemic Equilibrium in Epidemic Models with Subpopulatious. Math. Biosc. 75:205-227 (1985).

[6] González-Guzmán , J .: An epidemiological model for direct and indirect transmission of typhoid fever. Math. Biosc. 96 (1989), 33-46.

[7] González-Guzmán, J.; Naulin, R.: Analysis of a model of bovine brucelosis using singular perturbatiOns. Pre print.

[8] Beretta, E.; Cappaso, V.: Global stability results for a multigroup SIR Epidemic Model. Proc. of the Autumn Course Reseach Seminars on Mathematical Ecology. ICTP, Trieste, 1986.

[9] Jordan, D.W.; Smith : Nonlinear Ordinary Differential Equations, Oxford Univ. Press, 1977.

[10] Levine, M. ; Ferreccio, C. ; Black, R.; Tacket, C.; Germanier, R.: Progress in Vaccines Against Typhoid Fever. R. of lnfectious Diseases, Vol.11 May-June 1989.



How to Cite

J. González-Guzmán and B. González-Yáñez, “Local stability results on a model for typhoid fever with a core group”, Proyecciones (Antofagasta, On line), vol. 12, no. 2, pp. 161-169, Apr. 2018.