Ostrowski type fractional integral inequalities for s-Godunova-Levin functions via k-fractional integrals.


  • Ghulam Farid COMSATS Institute of Information Technology.
  • Atiq Ur Rehman COMSATS Institute of Information Technology.
  • Muhammad Usman COMSATS Institute of Information Technology.


Ostrowski inequality, Riemann-Liouville fractional integrals, s-Godunova-Levin functions


In this paper, we give some fractional integral inequalities of Ostrowski type for s-Godunova-Levin functions via Riemann-Liouville k- fractional integrals. We deduce some known Ostrowski type fractional integral inequalities for Riemann-Liouville fractional integrals and we also prove results for p-functions and Godunova-Levin functions by taking  s=0  ans s=1 respectively.


A. Ostrowski, Uber die Absolutabweichung einer differentiierbaren funktion von ihrem integralmittelwert, Comment. Math. Helv., 10(1), pp. 226--227, (1937).

R. Diaza and E. Pariglan, On hypergeometric function and k-pochemer, 15(, pp. 179--192, (2007).

G. Farid, New Ostrowski-type inequalities and their applications in two coordinates, Acta Math. Univ. Comenianae, 85 (1), pp. 107--112, (2016).

G. Farid, Some new Ostrowski type inequalities via fractional integrals, Int. J. Anal. App., 14(1), pp. 64--68, (2017).

G. Farid, Straightforward proofs of Ostrowski inequality and some related results, Int. J. Ana. (2016), 5 pages, Article ID 3918483.

G. Farid, S. Rafique, Atiq Ur Rehman, More on Ostrowski and Ostrowski-Gruss type inequalities, Commun. Optim. Theory, (2017) ArtID 15, 9 pages.

M. A. Noor, K. I. Noor, M. U. Awan, Fractional Ostrowski inequalities for s-Godunova-Levin functions, Int. J. Anal. App., 5, pp. 167--173, (2014).

D. S. Mitrinovič, J. E. Pečarič, and A. M. Fink, Inequalities involving functions and their integrals and derivatives, ser. Mathematics and its applications(East European series). Kluwer Academic Publisher Group, Dordrecht, 53 (1991).

S. Mubeen, G. M. Habibullah, k-fractional integrals and applications, Int. J. Contemp. Math. Sci., 7, pp. 89--94, (2012).

H. Laurent, Sur le calcul des derivees a indicies quelconques, Nouv. Annales de Mathematik, 3(3), pp. 240--252, (1884).

S. S. Dragomir, J. Pečarič and L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21, pp. 335--341, (1995).

E. K. Godunova and V. I. Levin, Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions, Numerical mathematics and mathematical physics (Russian), Moskov. Gos. Ped. Inst. Moscow, 166, pp. 138--142, (1985).

M. A. Noor, K. I. Noor, M. U. Awan, S. Khan, Fractional Hermite-Hadamard inequalities for some new classes of Godunova-Levin functions, Appl. Math. Inf. Sci. 8(6), pp. 2865--2872, (2014).

S. S. Dragomir, Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, Proyecciones, 34(4), pp. 323--341, (2015).

How to Cite

G. Farid, A. U. Rehman, and M. Usman, “Ostrowski type fractional integral inequalities for s-Godunova-Levin functions via k-fractional integrals.”, Proyecciones (Antofagasta, On line), vol. 36, no. 4, pp. 753-767, 1.