Critical points theorems and applications


  • Hafida Boukhrisse University Mohamed I.
  • Mimoun Moussaoui University Mohamed I.



Critical point theory, convexity conditions, Elliptic semi- linear problem, teoría de punto crítico, condiciones de convexidad, problema elíptico semi-lineal.


Author Biographies

Hafida Boukhrisse, University Mohamed I.

Faculty of Sciences,
Mathematical Department.

Mimoun Moussaoui, University Mohamed I.

Faculty of Sciences,
Mathematical Department.


[1] Palais, R. and Smale, S., a generalized Morse theory, Bull. Amer. Math. Sos. 70, pp. 165—171, (1964).

[2] Cerami,G., Un criterio de esistenza per i punti critici su varieta ilimitate., Rc. Ist. Lomb. Sci. Lett. 112, pp. 332—336, (1978).

[3] Bartolo, P., Benci, V. and Fortunato, D., Abstract critical point theorems and applications to some nonlinear problems with strong resonance at in?nity, J. Nonl. Anal. TMA 7, pp. 981—1012, (1983).

[4] A.Hammerstein., Nichtlineare integralgleichungen nebst Anwendungen., Acta Math., 54, pp. 117—176, (1930).

[5] C.L.Dolph., Nonlinear integral equations of the Hammerstein type, Trans. Amer. Math. soc., 66, pp. 289—307, (1949).

[6] Jabri.,A critical point theorem without compactness and Applications. J. Math. Analysis Applic. 90, pp. 64—7 1, (1982).

[7] Thews,K., A reduction method for some nonlinear Dirichlet problems., Nonlinear Anal. Theo.Methods App., 3, pp. 795—813, (1979).

[8] N.P.Cac., 0n elliptic boundary value problems at double resonance, J.Math.Anal.Appl. 132, pp. 473—483, (1988).

[9] A. C Lazer, E. M. Landesman et D. R. Meyer., On saddle point problems in the calculus of variations, the ritz algorithm and monotone convergence, J. Math. Anal. App. 52, pp. 594—614, (1975).

[10] Stepan A. Tersian.,A minimam theorems and applications to nonresonance problems for semilinear equations, Nonlinear Analysis: Theory, Methods et Applications. vol. 10. No 7, pp. 651—668, (1986).

[11] Bates P. et Ekeland I, A saddle point theorem, in Differential equations, Academic Press, London, ((1980).

[12] Manasevich P. F.,A mini mar): theorem. j. math. Analysis Applic. 90, pp. 64—71, (1982).

[13] M.Moussaoui, Questions d’emistence dans les problemes semi-lineaires elliptiques. These présentée en vue de l’obtention du grade de Docteur en Sciences, Université libre de Bruxelles, (1990—1991).

[14] Ha?da Boukhrisse and M.Moussaoui, Critical point theorems. (To appear).

[15] J. Mawhin and M. Willem., Critical points of convex perturbations of some inde?nite quadratic forms and semi-linear boundary value problems at resonance, Ann. Inst. Henry Poincaré., 3, pp. 431—453, (1986).

[16] S.Ahmad, A.C.Lazer, J .L.Paul., Elementary critical point theory and perturbations of elliptic boundary value problems at resonance, Indiana Univ. Math. J. 25, pp. 933—944, (1976).

[17] M. S. Berger., Nonlinearity and Functional Analysis., Academic Press. New York/London, (1977

[18] D.G.Costa., Topicos en analise nao-lineare e aplicacoes as equacoes diferenciais., Proc.E.L.A.M., Rio de Janeiro (1986), Springer Lect. Notes, a paraitre.



How to Cite

H. Boukhrisse and M. Moussaoui, “Critical points theorems and applications”, Proyecciones (Antofagasta, On line), vol. 21, no. 3, pp. 261-276, May 2017.




Most read articles by the same author(s)