On the invariance of subspaces in some baric algebras


  • I. Basso Universidad del Bío-Bío.
  • R. Costa Universidade de Sao Paulo.
  • J. Picanco Universidade Federal do Pará.




In this article, we look for invariance in commutative baric algebras (A, ?) satisfying (x 2 ) 2 = ?(x)x 3 and in algebras satisfying (x 2 ) 2 = ?(x 3 )x, using subspaces of kernel of ? that can be obtained by polynomial expressions of subspaces Ue e Ve of Peirce decomposition A = Ke ? Ue ? Ve of A, where e is an idempotent element. Such subspaces are called p -subspaces. Basically, we prove that for these algebras, the p -subspaces have invariant dimension, besides that, we find out necessary and sufficient conditions for the invariance of the p-subspaces.

Author Biographies

I. Basso, Universidad del Bío-Bío.

Departamento de Ciencias Básicas, Facultad de Ciencias.

R. Costa, Universidade de Sao Paulo.

Instituto de Matemática e Estatística.

J. Picanco, Universidade Federal do Pará.

Centro de Ciências Exatas e Naturais.


[1] M. T. Alcalde, C. Burgueño and C. Mallol. Les Pol(n,m)-algèbres: identités polynomiales symétriques des algèbres. Linear Algebra and its Applications, 191, pp. 213–234, (1993)

[2] R. Andrade and A. Labra. On a class of Baric Algebras. Linear Algebra and its Applications, 245, pp. 49–53, (1996)

[3] R. Costa and J. Pican¸co. Invariance of dimension of p-subspaces in B ernstein algebras. Communications in Algebra, 27 (8), pp. 4039-4055 (1999).

[4] I. M. H. Etherington. Commutative train algebras of ranks 2 and 3. J. London Math. Soc. 15, pp. 136-149, (1940)

[5] C. Mallol and R. Varro. A propos des algèbres vérifiant x [3] = ?(x) 3x. Linear Algebra and its Applications, 225, pp. 187–194, (1995).

[6] S. Walcher. Algebras which satisfy a train equation for the first three plenary powers. Arch. Math. 56, pp. 547–551, (1991).



How to Cite

I. Basso, R. Costa, and J. Picanco, “On the invariance of subspaces in some baric algebras”, Proyecciones (Antofagasta, On line), vol. 22, no. 1, pp. 91-102, Apr. 2017.