The modes of posterior distributions for mixed linear models

  • Alicia L. Carriquiry Iowa State University.
  • Wolfgang Kliemann Iowa State University.
Palabras clave: Posterior modes, Mixed linear models, Poly-t distributions.


Mixed linear models, also known as two-level hierarchical models, are commonly used in many applications. In this paper, we consider the marginal distribution that arises within a Bayesian framework, when the components of variance are integrated out of the joint posterior distribution. We provide analytical tools for describing the surface of the distribution of interest. The main theorem and its proof show how to determine the number of local maxima, and their approximate location and relative size. This information can be used by practitioners to assess the performance of Laplace-type integral approximations, to compute possibly disconnected highest posterior density regions, and to custom-design numerical algorithms.

Biografía del autor/a

Alicia L. Carriquiry, Iowa State University.
Department of Statistics, Iowa State University, U. S. A.Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Santiago Chile. 
Wolfgang Kliemann, Iowa State University.
Department of Mathematics, Iowa State University, U. S. A.  Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Santiago Chile.


[1] BAUWENS, L., and RICHARD, J-F. A 1-1 Poly-t random variable generator with application to Monte Carlo integration. J. of Econometrics 29, pp. 19—46, (1985).

[2] BERGER, J. O. Statistical Decision Theory and Bayesian Analysis, 2nd ed., New York, NY: Springer-Verlag, (1985).

[3] BESAG, J. and GREEN, P. J. Spatial statistics and Bayesian computation. JRSS (B) 55, pp. 25—37, (1993).

[4] BOX, G. E. P., and TIAO, G. C. Bayesian Inference in Statistical Analysis. Reading, MA: Addison-Wesley, (1973).

[5] DREZE, J. H. Bayesian regression analysis using poly-t densities. J. of Econometrics 6, pp. 329—354, (1977).

[6] DREZE, J. H., and RICHARD, J-F. Bayesian analysis of simultaneous equation systems. In: GRILICHES, Z., and INTRILIGATOR, M., (eds) Handbook of Econometrics. North Holland, Amsterdam, pp. 369—377, (1983).

[7] FULLER, W. A., and HARTER, R. M. The multivariate components of variance model for small area estimation. In: PLATEK, R., RAO, J. N. K., SARNDAL, C. E., and SINGH, M. P., (eds.) Small Area Statistics, pp. 103—123. Wiley, New York, (1987).

[8] GELFAND, A. E., and SMITH, A. F. M. Sampling based approaches to calculating marginal densities. J. of Amer. Statis. Assoc. 85, pp. 398—409, (1990).

[9] GOLDBERGER, A. S. Best linear unbiased prediction in the generalized linear regression. J. Amer. Statist. Assoc. 57, pp. 369—375, (1962).

[10] HARVEY, A. C. Forecasting, Structural Time Series, and the Kalman Filter. Cambridge University Press, Cambridge, MA, (1989).

[11] HARVILLE, D. A, and CARRIQUIRY, A. L. Classical and Bayesian prediction as applied to an unbalanced mixed linear model. Biometrics 48: pp. 987—1003, (1992).

[12] HENDERSON, C. R. Selection index and expected genetic advance. In: HANSON, W. D., and ROBINSON, H. F. (eds.) Statistical Genetics and Plant Breeding, pp. 141—163. NAS-NRC Publ 982, (1963).

[13] HOBERT, J. P. and CASELLA, G. The effect of improper priors on Gibbs sampling in hierarchical linear models. J. of Amer. Statis. Assoc. 91, pp. 1461—1473, (1996).

[14] JEFFREYS, H. Theory of Probability, 3rd ed., Oxford University Press, London, (1961).

[15] KASS, R. E., and STEFFEY, D. Approximate Bayesian inference in conditionally independent hierarchical models (parametric empirical Bayes models). J. Amer. Statist. Assoc. 84, pp. 717—726, (1989).

[16] LINDLEY, D. V. Approximate Bayesian methods. In: BERNARDO, J. M., DEGROOT, M. H., LINDLEY, D. V., and SMITH, A. F. M. (eds.) Bayesian Statistics 1, pp. 223—245. University of Valencia, Spain, (1980).

[17] LUBRANO, M., PIERSE, R. G., and RICHARD, J-F. Stability of a UK money demand equation: a Bayesian approach to testing exogeneity. Technical report, CORE, Louvain-la-Neuve, (1984).

[18] MORRIS, C. N. Approximate posterior distributions and posterior moments. In: BERNARDO, J. M., DEGROOT, M. H., LINDLEY, D. V., and SMITH, A. F. M. (eds.) Bayesian Statistics 3. Oxford University Press, Oxford, pp. 327—344, (1988).

[19] PROTTER, M. H., and MORREY, C. B. A First Course in Real Analysis. Springer-Verlag, New York, NY, (1977).

[20] RAIFFA, H., and SCHLAIFFER, R. Applied Statistical Decision Theory. Harvard University Press, Boston, MA, (1971).

[21] RICHARD, J-F. Classical and Bayesian inference in incomplete simultaneous equation models. In: HENDRY, D. F., and WALLIS, K. F. (eds.) Econometric and Quantitative Economics. Blackwell, Oxford, (1984).

[22] RICHARD, J-F., and TOMPA, H. On the evaluation of poly-t density functions. J. of Econometrics 12, pp. 335—351, (1980).

[23] ROBERT, C. P., and CASELLA, G. Monte Carlo Statistical Methods. Springer-Verlag, New York, NY, (1999).

[24] SEARLE, S. Linear Models. Wiley, New York, NY, (1981).

[25] SMITH, A. F. M., GELFAND, A., and RACINE-POON, A. (1990).

[26] STROUD, T. W. F. Bayes and empirical Bayes approaches to small area estimation. In: PLATEK, R., RAO, J. N. K., SARNDAL, C. E., and SINGH, M. P. (eds.) Small Area Statistics. Wiley, New York, NY, pp. 124—140, (1987).

[27] TIERNEY, L., KASS, R. E., and KADANE, J. B. Fully exponential Laplace approximations to expectations and variances of nonpositive functions. J. Amer. Statist. Assoc. 84 pp. 710—716, (1989).

[28] VAN DYK, D. A. Fitting mixed-effects models using efficient EM-type algorithms. J. of Graph. and Comput. Statis.. In press, (1999).

[29] WANG, C. S., RUTLEDGE, J. J., and GIANOLA, D. Bayesian analysis of mixed linear models via Gibbs sampling with an application to litter size of Iberian pigs. Genetique, Selection, Evolution 26, pp. 1—25 (1994).
Cómo citar
A. L. Carriquiry y W. Kliemann, «The modes of posterior distributions for mixed linear models», Proyecciones (Antofagasta, En línea), vol. 26, n.º 3, pp. 281-308, abr. 2017.

Artículos más leídos del mismo autor/a