On the local convergence of a two-step steffensen-type method for solving generalized equations

Authors

  • Ioannis K. Argyros Cameron university.
  • Saïd Hilout Université Sultan Moulay Slimane.

DOI:

https://doi.org/10.4067/S0716-09172008000300007

Keywords:

Banach space, Steffensen’s method, generalized equation, Aubin continuity, Hölder continuity, radius of convergence, divided difference, set—valued map, espacio de Banach, método de Steffensen, ecuación generalizada, continuidad de Aubin.

Abstract

We use a two-step Steffensen-type method [1], [2], [4], [6], [13]-[16] to solve a generalized equation in a Banach space setting under Hölder-type conditions introduced by us in [2], [6] for nonlinear equations. Using some ideas given in [4], [6] for nonlinear equations, we provide a local convergence analysis with the following advantages over related [13]-[16]: finer error bounds on the distances involved, and a larger radius of convergence. An application is also provided.

Author Biographies

Ioannis K. Argyros, Cameron university.

Department of Mathematics Sciences.

Saïd Hilout, Université Sultan Moulay Slimane.

Faculty of Science & Technics of Béni-Mellal. Department of Applied Mathematics & Computation.

References

[1] S. Amat, S. Busquier, Convergence and numerical analysis of a family of two—step Steffensen’s methods, Comput. and Math. with Appl., 49, pp. 13—22, (2005).

[2] I. K. Argyros, A new convergence theorem for Steffensen’s method on Banach spaces and applications, Southwest J. of Pure and Appl. Math., 01, pp. 23—29, (1997).

[3] I. K. Argyros, On the solution of generalized equations using m (m = 2) Fréchet differential operators, Comm. Appl. Nonlinear Anal., 09, pp. 85—89, (2002).

[4] I. K. Argyros, A unifying local—semilocal convergence analysis and applications for Newton—like methods, J. Math. Anal. Appl., 298, pp. 374—397, (2004).

[5] I. K. Argyros, On the approximation of strongly regular solutions for generalized equations, Comm. Appl. Nonlinear Anal., 12, pp. 97—107, (2005).

[6] I. K. Argyros, Approximate solution of operator equations with applications, World Scientific Publ. Comp., New Jersey, U. S. A., (2005).

[7] I. K. Argyros, An improved convergence analysis of a superquadratic method for solving generalized equations, Rev. Colombiana Math., 40, pp. 65—73, (2006).

[8] J. P. Aubin, H. Frankowska, Set—valued analysis, Birkhäuser, Boston, (1990).

[9] A. L. Dontchev, W. W. Hager, An inverse function theorem for set—valued maps, Proc. Amer. Math. Soc., 121, pp. 481—489, (1994).

[10] M. H. Geoffroy, S. Hilout, A. Piétrus, Stability of a cubically convergent method for generalized equations, Set—Valued Anal., 14, pp. 41—54, (2006).

[11] M. A. Hernández, The Newton method for operators with Hölder continuous first derivative, J. Optim. Theory Appl., 109, pp. 631—648, (2001).

[12] M. A. Hernández, M. J. Rubio, Semilocal convergence of the secant method under mild convergence conditions of differentiability, Comput. and Math. with Appl., 44, pp. 277—285, (2002).

[13] S. Hilout, Superlinear convergence of a family of two—step Steffensen—type method for generalized equations, to appear in International Journal of Pure and Applied Mathematics, (2007).

[14] S. Hilout, An uniparametric Newton—Steffensen—type methods for perturbed generalized equations, to appear in Advances in Nonlinear Variational Inequalities, (2007).

[15] S. Hilout, Convergence analysis of a family of Steffensen—type methods for solving generalized equations, submitted, (2007).

[16] S. Hilout, A. Piétrus, A semilocal convergence of a secant—type method for solving generalized equations, Positivity, 10, pp. 673—700, (2006).

[17] B. S. Mordukhovich, Stability theory for parametric generalized equations and variational inequalities via nonsmooth analysis, Trans. Amer. Math. Soc., 343, pp. 609-657, (1994).

[18] S. M. Robinson, Generalized equations and their solutions, part I: basic theory, Math. Programming Study, 10, pp. 128—141, (1979).

[19] S. M. Robinson, Generalized equations and their solutions, part II: applications to nonlinear programming, Math. Programming Study, 19, pp. 200—221, (1982).

[20] R. T. Rockafellar, Lipschitzian properties of multifunctions, Nonlinear Analysis 9, pp. 867—885, (1984).

[21] R. T. Rockafellar, R. J—B. Wets, Variational analysis, A Series of Comprehensives Studies in Mathematics, Springer, 317, (1998).

[22] J. D. Wu, J. W. Luo, S. J. Lu, A unified convergence theorem, Acta Mathematica Sinica, English Series, Vol. 21, (2), pp. 315—322, (2005).

Published

2017-04-06

How to Cite

[1]
I. K. Argyros and S. Hilout, “On the local convergence of a two-step steffensen-type method for solving generalized equations”, Proyecciones (Antofagasta, On line), vol. 27, no. 3, pp. 319-330, Apr. 2017.

Issue

Section

Artículos

Most read articles by the same author(s)

1 2 > >>