A note on the fiber dimension theorem


  • Jacqueline F. Rojas Universidade Federal da Paraíba.
  • Ramón Mendoza Universidade Federal de Pernambuco.




Fiber dimension theorem, Non-closed points.


The aim of this work is to prove a version of the Fiber Dimension Theorem, emphasizing the case of non-closed points.

El objetivo de este trabajo es probar una versión del Teorema de la Dimensión de la Fibra, enfatizando el caso de puntos no cerrados.

Author Biographies

Jacqueline F. Rojas, Universidade Federal da Paraíba.

 CCEN, Departamento de Matemática.

Ramón Mendoza, Universidade Federal de Pernambuco.

CCEN, Departamento de Matemática.


[1] M. F. Atiyah & I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, MA, (1969).

[2] D. Avritzer & I. Vainsencher, Hilb4P2, Lecture Notes in Mathematics, 1436, Springer Verlag, pp. 30-59, (1990).

[3] A. Beauville, Complex Algebraic Surfaces, Ast´erisque 54, pp. 63- 66, (1978).

[4] B. Crauder & R. Miranda, Quantum Cohomology of Rational Surfaces, In: The Moduli Space of Curves, Edited by R. Dijkgraaf, C. Faber, and G. van der Geer. Birhauser Press, Boston, pp. 35-82, (1995).

[5] I. Dolgachev, Introduction to Algebraic Geometry , http://www.math.lsa.umich.edu/~idolga/lecturenotes.html.

[6] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Graduate Texts in Math. 150, Springer, New York, (1995).

[7] B. Harbourne, Problems and Progress: A survey on fat points in P2, Queen’s papers in Pure and Applied Mathematics, The Curves Seminar at Queen’s, vol. 123, (2002).

[8] J. Harris, Algebraic Geometry: A first course, Graduate Texts in Math. 133, Springer, New York, (1995).

[9] J. Harris & D. Eisenbud, The Geometry of Schemes, Graduate Texts in Math. 197, Springer, New York, (1999).

[10] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math. 52, Springer, New York, (1977).

[11] D. Mumford, The Red Book of Varieties and Schemes, Lecture Notes in Math. 1358, Springer, Berlin, (1988).

[12] M. Reid, Undergraduate Algebraic Geometry, London Mathematical Society Students Texts 12, Cambridge University Press, Cambridge and New York, (1988).

[13] J. Rojas & I. Vainsencher, Conical Sextuplets, Communications in Algebra, 24(11), pp. 3437-3457, (1996).

How to Cite

J. F. Rojas and R. Mendoza, “A note on the fiber dimension theorem”, Proyecciones (Antofagasta, On line), vol. 28, no. 1, pp. 57-73, 1.