Sum divisor cordial graphs


  • A. Lourdusamy St. Xavier’s College.
  • F. Patrick St. Xavier’s College.



Sum divisor cordial, divisor cordial, divisor cordial de suma.


A sum divisor cordial labeling of a graph G with vertex set V is a bijection f from V (G) to {1, 2, ..., |V (G)|} such that an edge uv is assigned the label 1 if 2 divides f (u) + f (v) and 0 otherwise, then the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. A graph with a sum divisor cordial labeling is called a sum divisor cordial graph. In this paper, we prove that path, comb, star, complete bipartite, K2+ mK1, bistar, jewel, crown, flower, gear, subdivision of the star, K1,3* K1,n and square graph of Bn,n are sum divisor cordial graphs.

Author Biographies

A. Lourdusamy, St. Xavier’s College.

Department of Mathematics.

F. Patrick, St. Xavier’s College.

Department of Mathematics.


[1] J. A. Gallian, A Dyamic Survey of Graph Labeling, The Electronic J. Combin., 17 (2015) #DS6.

[2] F. Harary, Graph Theory, Addison-wesley, Reading, Mass (1972).

[3] P. Lawrence Rozario Raj and R. Lawence Joseph Manoharan, Some Result on Divisor Cordial Labeling of Graphs, Int. J. Innocative Sci., 1 (10), pp. 226-231, (2014).

[4] P. Maya and T. Nicholas, Some New Families of Divisor Cordial Graph, Annals Pure Appl. Math., 5 (2), pp. 125-134, (2014).

[5] A. Nellai Murugan and G. Devakiruba, Cycle Related Divisor Cordial Graphs, Int. J. Math. Trends and Tech., 12 (1), pp. 34-43, (2014).

[6] A. Nellai Murugan, G. Devakiruba and S. Navanaeethakrishan, Star Attached Divisor Cordial Graphs, Int. J. Inno. Sci. Engineering and Tech., 1 (5), pp. 165-171, (2014).

[7] S. K. Vaidya and N. H. Shah, Some Star and Bistar Related Cordial Graphs, Annals Pure Appl. Math., 3 (1), pp. 67-77, (2013).

[8] S. K. Vaidya and N. H. Shah, Further Results on Divisor Cordial Labeling, Annals Pure Appl. Math., 4 (2), pp. 150-159, (2013).

[9] R. Varatharajan, S. Navanaeethakrishan and K. Nagarajan, Divisor Cordial Graphs, Int. J. Math. Combin., 4, pp. 15-25, (2011).



How to Cite

A. Lourdusamy and F. Patrick, “Sum divisor cordial graphs”, Proyecciones (Antofagasta, On line), vol. 35, no. 1, pp. 119-136, Mar. 2017.