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Abstract

Given two strictly upper triangular matrices X,Y ∈ Cm×m, we
study the range WY (X) = {trnXn−1Y ∗ : n ∈ N}, where N is the
group of unit upper triangular matrices in Cm×m. We prove that it
is either a point or the whole complex plane. We characterize when it
is a point.

We also obtain some convexity result for a similar range, where
N is replaced by any ball of Ck (k = m(m − 1)/2) embedded in N ,
m ≤ 4.
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1. Introduction

Let Cm×m be the space of all m × m complex matrices. The classical
numerical range of A ∈ Cm×m is defined as

W (A) := {x∗Ax : x∗x = 1, x ∈ Cm} ⊂ C.

The celebrated Toeplitz-Hausdorff theorem [9] asserts that W (A) is a com-
pact convex subset of C. There are numerous generalizations [5, 1, 4, 8,
7, 10, 11, 12, 14] and our references are far from complete. One important
view is to deem the numerical range as the image of an orbit under the
linear functional [2] determined by A, that is,

W (A) = {trAxx∗ : x ∈ Cm, x∗x = 1}.

The set

{xx∗ : x ∈ Cm, x∗x = 1} = O(E11) := {UE11U∗ : U ∈ U(m)}

is viewed as an orbit of the matrix E11 := diag (1, 0, . . . , 0) under the con-
jugation action of U(m), where U(m) denotes the unitary group in Cm×m.
In general, if C ∈ Cm×m, then denote by

O(C) := {UCU∗ : U ∈ U(m)}

the orbit of C under the conjugation action of U(n). The C-numerical
range of A [13, 3] is defined to be the set

WC(A) := {trAY : Y ∈ O(C)}.

If C = diag (1, . . . , 1, 0, . . . , 0), (k 1’s), it becomes Halmos’s k-numerical
range [7] of A

Wk(A) = {
kX

j=1

x∗jAxj : x1, . . . , xk ∈ Cm are orthonormal }.

If C = diag (c1, . . . , cm) (c’s are real), the C-numerical range of A becomes
Westwick’s c-numerical range [14] of A

Wc(A) = {
mX
j=1

cjx
∗
jAxj : x1, . . . , xm ∈ Cm are orthonormal }.
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Westwick’s theorem [14] asserts that the c-numerical range of A is convex.
The orbital point of view leads to several generalizations of the numerical
range. Moreover the convexity result has been successfully extended in
the context of compact Lie groups [11] and most real classical semisimple
Lie algebras [8, 4, 12]. Usually the groups involved in the relevant orbital
generalizations are compact (for example U(m) is compact in the setting
of the c-numerical range).

In this note we consider the group ofm×m unit upper triangular matri-
ces which is non-semisimple and noncompact. By a unit upper triangular
matrix, we mean an upper triangular with diagonal entries all ones. Let N
be the group of unit upper triangular matrices in Cm×m. It is a unipotent
(noncompact) Lie group whose Lie algebra n is the set of strictly upper
triangular matrices in Cm×m. Given X ∈ n, denote by

O(X) := {nXn−1 : n ∈ N} ⊂ n

the orbit of X under the conjugation action of the group N . Let X,Y ∈ n.
The numerical range of the pair (X,Y ) is defined as

WY (X) := {trnXn−1Y ∗ : n ∈ N}.
It may be interpreted as the image of the orbit O(X) under the linear
functional determined by Y . In Section 2 we prove that WY (X) is either a
point (not necessarily the origin) or C. In Section 3, given r > 0, cij ∈ C,
1 ≤ i < j ≤ m, we consider a compact subset of N :

N1 := {n := (nij) ∈ N :
X

1≤i<j≤m
|nij − cij |2 = r2}.

In other words, the ball of radius r (with respect to the 2-norm) centered
at c of Cs is embedded as N1 ⊂ N , where s = m(m − 1)/2. We consider
the restricted range:

W 1
Y (X) := {trnXn−1Y ∗ : n ∈ N1}.

When m = 2, 3, 4 we prove that W 1
Y (X) is a convex set. When m > 4

convexity of W 1
Y (X) is unknown.

2. The shape of WY (X)

Theorem 1. Let X,Y ∈ n. When m = 2, WY (X) = {trnXn−1Y ∗ : n ∈
N} is a singleton set {xȳ} if

X =

Ã
0 x
0 0

!
, Y =

Ã
0 y
0 0

!
.



80 Wen Yan

When m > 2, WY (X) is either a point or the whole complex plane C.
If WY (X) is a point, then the point is

P
1≤i< ≤m xi ȳi . More precisely,

WY (X) = C if and only if one of the following is true.

(i) xjkȳi 6= 0 for some i, j, k and such that

(a) 1 ≤ i < j < k < ≤ m, or

(b) 1 ≤ i = j < k < − 1 ≤ m− 1, or
(c) 2 ≤ i+ 1 < j < k = ≤ m.

(ii) xjkȳi = 0 for all 1 ≤ i < j < k < ≤ m, but there exist i, such that
i < − 1, xi, −1ȳi 6= 0 and xi, −1ȳi 6= x tȳ −1,t for all < t ≤ m, or
xi+1, ȳi 6= 0 and xi+1, ȳi 6= xtiȳt,i+1 for all 1 ≤ t < i.

Proof. The case m = 2 is trivial. Suppose m > 2. Let n = (nij) ∈ N .
Clearly M := n−1 is upper triangular. Because of the upper triangular
form of n,X, Y,M , we have

trnXn−1Y ∗ =
X

1≤i≤j<k≤ ≤m
nijxjkMk ȳi .

Notice that the (k, ) entry of M is

Mkl =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if k = l,
0 if k > 1

(−1)k+l det

⎛⎜⎜⎜⎜⎜⎝
nk,k+1 nk,k+2 nk,k+3 · · · nk,l−1 nk,l
1 nk+1,k+2 nk+1,k+3 · · · nk+1,l−1 nk+1,l
0 1 nk+2,k+3 · · · nk+2,l−1 nk+2l
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 nl−1,l

⎞⎟⎟⎟⎟⎟⎠
if k < l

Notice that Mk is a polynomial in the variables nst, k ≤ s < t ≤ .
Moreover the exponent of each nst in the expression (2.1) of Mk is either
0 or 1.

Evidently trnXn−1Y ∗ is a polynomial of nij , 1 ≤ i < j ≤ m. Since nij
does not appear in the polynomial Mk for i ≤ j < k ≤ , the exponent of
any nij (i < j) in trnXn−1Y ∗ is either 0 or 1. We use n1, ..., nr to denote
those nij (i < j) which appear in the polynomial trnXn−1Y ∗. Let

f0(n1, n2, ..., nr) := trnXn−1Y ∗.
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1. If f0 is a constant polynomial. Then {trnXn−1Y ∗ : n ∈ N} is a
point.

2. Otherwise, we can rewrite f0 as

f0(n1, ..., nr) = n1f1(n2, ..., nr) + f2(n2, ..., nr),

where f1 is either a nonconstant polynomial in n2, n3..., nr or a nonzero
constant number c. In either case we can choose complex numbers
c2, ..., cr for n2, ..., nr such that f1(c2, ..., cr) 6= 0. By the fundamen-
tal theorem of algebra {f0(n1, c2, ..., cr) : n1 ∈ C} = C. Hence
WY (X) = C.

So WY (X) is either a point or C.

We are going to show that WY (X) = C if either (i) or (ii) holds. Sup-
pose (i)(a) is true, that is, there exists xj0k0 ȳi0 0 6= 0 for some 1 ≤ i0 <
j0 < k0 < 0 ≤ m. Define

n(s) := (nij) = Im + sEi0,j0 + sEk0, 0 ∈ N, s ∈ C,

and Eij is the matrix with 1 as the (i, j) entry and zeros elsewhere. So
M := n(s)−1 = Im − sEi0,j0 − sEk0, 0 . Then

f(s) := trn(s)Xn(s)−1Y ∗ =
X

1≤i≤j<k≤ ≤m
nijxjkMklȳi

is a quadratic polynomial in s, and the leading term of f(s) is ni0j0xj0k0Mk0 0 ȳi0 0 =
−xj0k0 ȳi0 0s

2. Therefore

C = {f(s) : s ∈ C} ⊂WY (X) ⊂ C.

We now insert a lemma.

Lemma 2. Suppose (i)(a) is not true.

1. If there exist 1 ≤ i0 < k0 < 0 ≤ m such that xi0k0 ȳi0 0 6= 0, then
xik0 ȳi 0 = 0 for all i 6= i0.

2. If there exist 1 ≤ i0 < j0 < 0 ≤ m such that xj0 0 ȳi0 0 6= 0, then
xj0 ȳi0 = 0 for all 6= 0.



82 Wen Yan

Proof. (1) If there exists i1 6= i0 such that 1 ≤ i1 < k0 and xi1k0 ȳi1 0 6= 0,
then we have the following two cases.

(a) if i0 < i1, then xi1k0 ȳi0 0 6= 0 with 1 ≤ i0 < i1 < k0 < 0,

(b) if i0 > i1, then xi0k0 ȳi1 0 6= 0 with 1 ≤ i1 < i0 < k0 < 0.

Both are under case (i)(a). The proof of (2) is analogous. 2
Suppose (i)(b) is true. Let i0, j0, k0 and 0 be such that 1 ≤ i0 = j0 <

k0 < 0 − 1 ≤ m− 1 and xj0k0 ȳi0 0 = xi0k0 ȳi0 0 6= 0. Let n(s) := (nij) ∈ N
be defined as follows:

nk,k+1 = s, k = k0, . . . , 0 − 1, nij = 0 for all other i < j.(2.1)

Set
g(s) := trn(s)Xn(s)−1Y ∗ =

X
1≤i≤j<k≤ ≤m

nijxjkMk ȳi ,

where M := n(s)−1 and

Mkl =

⎧⎪⎨⎪⎩
(−1)k+l sl−k if k0 ≤ k ≤ l0,
1 if k = l,
0 for all other k, l.

Notice that deg g(s) = 0−k0. Only Mk0 0 = (−1) 0+k0s 0−k0 of M has
the highest degree. Moreover nij in nijxjk0s

0−k0−1ȳi, 0−1 = nijxjk0Mk0, 0−1ȳi, 0−1
(i ≤ j < k0 < 0 − 1) or nijxj,k0+1s 0−k0−1ȳi 0 = nijxj,k0+1Mk0+1, 0 ȳi 0
(i ≤ j < k0 + 1 < 0) cannot be s, by (2.1). So the leading term of g(s) is

(−1)k0+ 0

∙ X
1≤i≤j<k0

nijxjk0 ȳi 0

¸
s 0−k0 = (−1)k0+ 0

∙ X
1≤i<k0

xik0 ȳi 0

¸
s 0−k0 .

(2.2)
If (i)(a) is not true, then by Lemma 2(1), (2.2) becomes

(−1)k0+ 0xi0k0 ȳi0 0s
0−k0 .

Therefore {g(s) : s ∈ C} = C and hence WY (X) = C.
If (i)(c) is true, then there exist 2 ≤ i0 + 1 < j0 < 0 ≤ m such that

xj0 0 ȳi0 0 6= 0. Let n(s) := (nij) = Im + sEi0,j0 ∈ N , s ∈ C. Then
M := n(s)−1 = Im − sEi0,j0 . We may assume that (i)(a) is not true.
Then xj0 ȳi0 = 0 for all 6= 0 by Lemma 2(2). Thus the only possible
nonconstant term in the polynomial

h(s) := trn(s)Xn(s)−1Y ∗ =
X

1≤i≤j<k≤ ≤m
nijxjkMk ȳi
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isX
j0< ≤m

ni0j0xj0 M ȳi0 +
X

1≤i<i0
niixii0Mi0j0 ȳij0 = xj0 0 ȳi0 0s−

X
1≤i<i0

xii0 ȳij0s.

Since i0 + 1 < j0, if there exists xii0 ȳij0 6= 0 for some i < i0, then this
becomes case (i)(b) and WY (X) = C. Otherwise xii0 ȳij0 = 0 for all 1 ≤
i < i0, then the leading term of h(s) is xj0 0 ȳi0 0s with nonzero coefficient.
Therefore {h(s) : s ∈ C} = C and hence WY (X) = C.

Suppose condition (ii) holds. Then there exist 1 ≤ i0 < 0 − 1 ≤ m− 1
such that (1) xi0, 0−1ȳi0 0 6= 0 and xi0, 0−1ȳi0 0 6= x 0tȳ 0−1,t for all t > 0,
or (2) xi0+1, 0 ȳi0 0 6= 0 and xi0+1, 0 ȳi0 0 6= xti0 ȳt,i0+1 for all 1 ≤ t < i0. We
may assume that condition (i) does not hold.

(1) Define n(s) := (nij) = Im+ sE 0−1, 0 ∈ N , s ∈ C. So M := n(s)−1 =
Im − sE 0−1, 0 . Let

u(s) := trn(s)Xn(s)−1Y ∗ =
X

1≤i≤j<k≤ ≤m
nijxjkMk ȳi .

Then

u(s) =
X

1≤i≤ 0−1
niixi, 0−1M 0−1, 0 ȳi 0 +

X
0< ≤m

n 0−1, 0x 0 M ȳ 0−1,

+
X

1≤i< ≤m
niixi M ȳi

= −xi0, 0−1ȳi0 0s+
X

0<t≤m
x 0tȳ 0−1,ts+

X
1≤i< ≤m

xi ȳi .

The last equality is due to Lemma 2(1) which implies xi, 0−1ȳi 0 = 0
for all i 6= i0. Therefore, if x 0tȳ 0−1,t = 0 for all t > 0, then

u(s) = −xi0, 0−1ȳi0 0s+
X

1≤i< ≤m
xi ȳi .

Otherwise by Lemma 2(2) there is only one t, say t0, such that
x 0tȳ 0−1,t 6= 0. Hence

u(s) = (x 0t0 ȳ 0−1,t0 − xi0, 0−1ȳi0 0)s+
X

1≤i< ≤m
xi ȳi ,

where xi0, 0−1ȳi0 0 6= x 0t0 ȳ 0−1,t0 by (ii). In both cases, the polyno-
mial u(s) is linear. Thus WY (X) = C.
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(2) If there exist xi0+1 0 ȳi0 0 6= 0 with 1 ≤ i0 < 0 − 1 ≤ m − 1 and
xi0+1 0 ȳi0 0 6= xti0 ȳti0+1 for all 1 ≤ t < i0.

Define n(s) := (nij) = Im + sEi0,i0+1 ∈ N , s ∈ C. Then M :=
n(s)−1 = Im − sEi0,i0+1. Let

v(s) := trn(s)Xn(s)−1Y ∗.

By Lemma 2(2), xi0+1, ȳi0 = 0 for all 6= 0. Thus

v(s) =
P

i0+1< ≤m ni0,i0+1xi0+1, M ȳi0 +
P
1≤i<i0 niixii0Mi0,i0+1ȳi,i0+1

+
P
1≤i≤ ≤m xi M ȳi

= xi0+1, 0 ȳi0 0s−
P
1≤t<i0 xti0 ȳt,i0+1s+

P
1≤i≤ ≤m xi ȳi .

Therefore, if xti0 ȳt,i0+1 = 0 for all t < i0, then

v(s) = xi0+1, 0 ȳi0 0s+
X

1≤i≤ ≤m
xi ȳi .

Otherwise by Lemma 2(1), there is only one t, denoted by t0, such
that xti0 ȳt,i0+1 6= 0. Hence

v(s) = (xi0+1, 0 ȳi0 0 − xt0i0 ȳt0,i0+1)s+
X

1≤i≤ ≤m
xi ȳi ,

where xi0+1, 0 ȳi0 0 6= xt0i0 ȳt0,i0+1 by (ii). In both cases, the polyno-
mial v(s) is linear. Therefore WY (X) = C.

So either (i) or (ii) implies WY (X) = C.
Suppose (i) and(ii) are not true. Then the only nonzero terms among

xjkȳi , 1 ≤ i ≤ j < k ≤ ≤ m, are (1) xi, −1ȳi with xi, −1ȳi = x tȳ −1,t 6=
0 for some t > , and (2) xi+1, ȳi with xi+1, ȳi = xtiȳt,i+1 6= 0 for some
t < i. Indeed for each case t is unique by Lemma 2. Thus

trnXn−1Y ∗

=
X

1≤i≤j<k≤ ≤m
nijxjkMk ȳi

=
X

1≤i< −1≤m−1
niixi, −1M −1, ȳi +

X
1≤i< −1≤m−1

ni,i+1xi+1, M ȳi

+
X

1≤i< ≤m
niixi M ȳi (since (i) does not hold)
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=
X

1≤i< −1≤m−1
−n −1, xi, −1ȳi +

X
1≤i< −1≤m−1

ni,i+1xi+1, ȳi

+
X

1≤i< ≤m
xi ȳi (since M −1, = −n −1, )

=
X

1≤i< −1<t−1≤m−1
[−n −1, xi, −1ȳi + n −1, x tȳ −1,t]

+
X

1≤i< ≤m
xi ȳi (since (ii) does not hold)

=
X

1≤i< ≤m
xi ȳi .

Therefore WY (X) = {
P
1≤i< ≤m xi ȳi }.

2

3. Convexity of W 1
Y (X)

Given cij ∈ C, 1 ≤ i < j ≤ m, r > 0, let

N1 := {n := (nij) ∈ N :
X

1≤i<j≤m
|nij − cij |2 = r2} ⊂ N.

In other words, N1 is the embedding in N of the ball in Cs (s = m(m −
1)/2) of radius r centered at c = (c12, . . . , c1n, c23, . . . , c2n, . . . , cn−1,n)T . We
define the range:

W 1
Y (X) := {trnXn−1Y ∗ : n ∈ N1} ⊂WY (X).

Theorem 1. 1. When m = 2, W 1
Y (X) is the singleton set {xȳ} if

X =

Ã
0 x
0 0

!
, Y =

Ã
0 y
0 0

!
.

2. When m = 3, for any r > 0, c1 := c12, c2 := c13, c3 := c23 ∈ C, 1 ≤
i < j ≤ m, W 1

Y (X) is the circular disc in C centered at
P3

i=1 xiȳi +
x3ȳ2c1 − x1ȳ2c3 with radius r|y2|

p
|x1|2 + |x3|2, if

X =

⎛⎜⎝ 0 x1 x2
0 0 x3
0 0 0

⎞⎟⎠ , Y =

⎛⎜⎝ 0 y1 y2
0 0 y3
0 0 0

⎞⎟⎠ ∈ n
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Proof. The first statement is trivial. When m = 3, let

n =

⎛⎜⎝ 1 n1 n2
0 1 n3
0 0 1

⎞⎟⎠ ∈ N, such that
3X

j=1

|nj − cj |2 = r2.

By direct computation

trnXn−1Y ∗ =
3X

i=1

xiȳi + x3ȳ2n1 − x1ȳ2n3

=
3X

i=1

xiȳi + x3ȳ2c1 − x1ȳ2c3 + x3ȳ2(n1 − c1)− x1ȳ2(n3 − c3).

The locus of x3ȳ2(n1 − c1)− x1ȳ2(n3 − c3), as n runs through N1, is

L = {r(|x3ȳ2|eiξ1 cos θ + |x1ȳ2|eiξ2 sin θ) : θ, ξ1, ξ2 ∈ [0, π]}.

It is the circular disc centered at the origin with radius r
p
|x3ȳ2|2 + |x1ȳ2|2.

2

To establish the 4 × 4 case, we need the following result of Gutiérrez
and Medrano [6] which generalizes the Toeplitz-Hausdorff’s theorem.

Theorem 2. [6] Let A ∈ Cm×m with m ≥ 2. Given α, β, c ∈ Cm, and
r > 0. The set

{z∗Az + α∗z + z∗β : z ∈ Cm, (z − c)∗(z − c) = r2}

is a compact convex set in C.

Theorem 3. When m = 4, for any r > 0, cij ∈ C, 1 ≤ i < j ≤ m, W 1
Y (X)

is a compact convex subset of C. In general it is not necessary a circular
disk.

Proof. Let

n =

⎛⎜⎜⎜⎝
1 n1 n2 n3
0 1 n4 n5
0 0 1 n6
0 0 0 1

⎞⎟⎟⎟⎠ ∈ N1.



Numerical range of a pair of strictly upper triangular matrices 87

Let

X =

⎛⎜⎜⎜⎝
0 x1 x2 x3
0 0 x4 x5
0 0 0 x6
0 0 0 0

⎞⎟⎟⎟⎠ , y =

⎛⎜⎜⎜⎝
0 y1 y2 y3
0 0 y4 y5
0 0 0 y6
0 0 0 0

⎞⎟⎟⎟⎠ ∈ n
By direct computation

n−1 =

⎛⎜⎜⎜⎝
1 −n1 n1n4 − n2 −n1n4n6 + n1n5 + n2n6 − n3
0 1 −n4 n4n6 − n5
0 0 1 −n6
0 0 0 1

⎞⎟⎟⎟⎠ .

Hence

nXn−1

=

⎛⎜⎜⎜⎝
0 x1 x2 + x4n1 − x1n4 x3 − x4n1n6 + x1n4n6 + x5n1 + x6n2 − x1n5 − x2n6
0 0 x4 x5 + x6n4 − x4n6
0 0 0 x6
0 0 0 0

⎞⎟⎟⎟⎠ .

Then

trnXn−1Y ∗ =
6X

i=1

xiȳi − x4ȳ3n1n6 + x1ȳ3n4n6 + (x4ȳ2 + x5ȳ3)n1 + x6ȳ3n2

+(x6ȳ5 − x1ȳ2)n4 − x1ȳ3n5 − (x2ȳ3 + x4ȳ5)n6.(3.1)

Set

z := (n1, n2, n3, n4, n5, n̄6)
∗.

Set A := (aij), where a16 = −x4ȳ3, a46 = x1ȳ3, and aij = 0 otherwise.

Set

α := (0, 0, 0, 0, 0,−(x2ȳ3 + x4ȳ5))
∗,

and

β := (x4ȳ2 + x5ȳ3, x6ȳ3, 0, x6ȳ5 − x1ȳ2,−x1ȳ3, 0)T .

Note that trnXn−1Y ∗ = z∗Az + α∗z + z∗β. Now

W 1
Y (X) = {z∗Az + α∗z + z∗β : z ∈ C6, (z − c)∗(z − c) = r2}.

By Theorem 2, it is convex.
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Choose 4 × 4 strictly upper triangular matrices X,Y such that x1 =
x6 = 0 and −x4ȳ3 = x4ȳ2 + x5ȳ3 = −(x2ȳ3 + x4ȳ5) = 1. Set c = 0. So

W 1
Y (X) =

6X
i=1

xiȳi + S,

where S = {ξ1 + ξ2 + ξ1ξ2 : ξ1, ξ2 ∈ C, |ξ1|2 + |ξ2|2 ≤ 1}. The set S is
symmetric about the x-axis. By direct computation S ∩R = [−1,

√
2 + 1

2 ].

The set S is not a circular disk by considering the point
√
2i− 1

2 ∈ S given

by ξ1 = ξ2 = i/
√
2. 2

If one replaces the expression in Theorem 2 by the form zTAz+αT z+
zTβ (clearly (3.1) is of this form), we may not have a convex set.

Example 4. Let f(u) = u2 + 2u+ 1, u ∈ C. If

A = diag (1, 0, . . . , 0) ∈ Cm×m, α = (2, 0, . . . , 0)T , β = (0, . . . , 0)T ∈ Cm,

the set W := {zTAz + αT z + zTβ + 1 : z ∈ Cm, z∗z = 1} = {f(u) : u ∈
C, u∗u = 1} is not convex.

Proof. Let u = (cos θ + i sin θ), and −π ≤ θ < π. Then the elements of
W are of the form

f(u) = cos 2θ + 2cos θ + 1 + i(sin 2θ + 2 sin θ).

Clearly W is symmetric about the x-axis. By choosing θ = −2π/3 and
2π/3 respectively, we have P1 = −1/2 + i

√
3/2, P2 = −1/2− i

√
3/2 ∈ W .

The midpoint −1/2 of P1 and P2 is not contained in W . Therefore W is
not convex. 2
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