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Abstract

In this paper, we give some sufficient conditions on the instability
of the zero solution of a kind of eighth order nonlinear differential
equations of retarded type by using the Lyapunov direct method. The
obtained sufficient conditions improve an existing result in the litera-
ture.
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1. Introduction

Since 1991 by now, the instability of solutions for various nonlinear scalar
and vector differential equations of eighth order without delay has only
been investigated by a few authors, see, Bereketoğlu [1], Tunç [6, 7], C.
Tunç and E. Tunç [8] and the references contained therein. In addition, in
1996, Iyase [4] proved a result on the nonexistence of nontrivial periodic
solutions to the nonlinear eighth order scalar differential equation without
delay

x(8)+a1x
(7)+a2x

(6)+a3x
(5)+a4x

(4)+a5x
000+f6(x

0)x00+f7(x)x
0+f8(x) = 0.

(1.1)

Consider the linear constant coefficient differential equation of eighth order

x(8) + a1x
(7) + a2x

(6) + a3x
(5) + a4x

(4) + a5x
000 + a6x

00 + a7x
0 + a8x = 0.

(1.2)

It is well known that the auxiliary equation of Eq. (1.2) is given by

ψ(λ) ≡ λ8 + a1λ
7 + a2λ

6 + a3λ
5 + a4λ

4 + a5λ
3 + a6λ

2 + a7λ+ a8 = 0.

If β is an arbitrary real number, then the real part of ψ(iβ) is given by

φ(β) = β8 − a2β
6 + a4β

4 − a6β
2 + a8.

It is also well known that if

a2 ≤ 0, a4 ≥ 0, a6 ≤ 0, a8 > 0

in which case φ(β) > 0 , then the auxiliary equation cannot have any
purely imaginary root whatever. It therefore follows from general theory
that Eq. (1.2) does not has a periodic solution except x = 0 . An analogous
consideration of the imaginary part of ψ(iβ) also leads to conditions on a1,
a3, a5 and a7 for the nonexistence of any periodic solution of Eq. (1.2)
other than x = 0 .
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In this paper, instead of Eq. (1.1), we consider the eighth order nonlin-
ear functional differential equation of delay type

x(8) + a1x
(7) + a2x

(6) + a3x
(5) + a4x

(4) + a5x
000 + f6(x

0)x00 + f7(x)x
0

+f8(x, x(t− r), x0, x0(t− r), ..., x(7), x(7)(t− r)) = 0.(1.3)

We write Eq. (1.4) in system form as

x01 = x2, x
0
2 = x3, x

0
3 = x4, x

0
4 = x5, x

0
5 = x6, x

0
6 = x7, x

0
7 = x8,

x08 = −a1x8 − a2x7 − a3x6 − a4x5 − a5x4 − f6(x2)x3 − f7(x1)x2
−f8(x1, x1(t− r), x2, x2(t− r), ..., x8, x8(t− r)),(1.4)

which was obtained as usual by setting x = x1, x
0 = x2, x

00 = x3, x
000 = x4,

x(4) = x5, x
(5) = x6, x

(6) = x7 and x(7) = x8 in (1.3), where r is a
positive constant, a1, a2, a3, a4 and a5 are some constants, the primes in
Eq. (1.3) denote differentiation with respect to t, t ∈ <+, <+ = [0,∞);
f6, f7 and f8 are continuous functions on <, <, <16, respectively, with
f8(0, x1(t− r), ..., x8(t− r)) = 0, and satisfy a Lipschitz condition in their
respective arguments. Hence, the existence and uniqueness of the solutions
of Eq. (1.3) are guaranteed (see Èl’sgol’ts [2, pp.14, 15]). We assume in
what follows that x1(t), x2(t), x3(t), x4(t), x5(t), x6(t), x7(t) and x8(t) are
abbreviated as x1, x2, x3, x4, x5, x6 x7 and x8, respectively.

The aim of this paper is to improve the result established in [4, Theorem
1] to the eighth order nonlinear delay differential equation (1.3) for the
instability of its zero solution. Our motivation comes from the papers [1,
3, 4, 5, 6, 7, 8, 9].

As known, in general, it is not possible to solve all linear and nonlinear
differential equations, except numerically. Therefore, it is very important
obtaining information for the qualitative behaviors of solutions when there
is no analytical expression for solutions of any differential equation under
investigation. It should be noted that the Lyapunov’s second (or direct)
method is the most effective tool to discuss the instability of solutions of
nonlinear differential equations of higher order, when there is no analytical
expression for solutions. The technique is also called the direct method,
because it can be applied directly to the differential equation under study,
without any knowledge of solutions, provided the person using the method
is clever to construct or define an appropriate the right auxiliary function,
the Lyapunov function or functional. Here, by means of the Lyapunov
direct method, we prove a theorem for the zero solution of Eq. (1.3) to
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be unstable. That is to say that, by defining a Lyapunov function, we will
accomplish the result to be established in this work.

Let r ≥ 0 be given, and let C = C([−r, 0], <n) with

kφk = −r ≤ s ≤ 0max |φ(s)| , φ ∈ C.

For H > 0 define CH ⊂ C by

CH = {φ ∈ C : kφk < H}.

If x : [−r, a]→ <n is continuous, 0 < A ≤∞, then, for each t in [0, A),
xt in C is defined by

xt(s) = x(t+ s),−r ≤ s ≤ 0, t ≥ 0.

Let G be an open subset of C and consider the general autonomous
differential system with finite delay

ẋ = F (xt), xt = x(t+ θ),−r ≤ θ ≤ 0, t ≥ 0,
where F : G → <n is continuous and maps closed and bounded sets into
bounded sets. It follows from these conditions on F that each initial value
problem

ẋ = F (xt), x0 = φ ∈ G

has a unique solution defined on some interval [0, A), 0 < A ≤ ∞. This
solution will be denoted by x(φ)(.) so that x0(φ) = φ.

Definition. The zero solution, x = 0, of ẋ = F (xt) is stable if for each
ε > 0 there exists δ = δ(ε) > 0 such that kφk < δ implies that |x(φ)(t)| < ε
for all t ≥ 0. The zero solution is said to be unstable if it is not stable.
Theorem A. Suppose there exists a Lyapunov function V : G→ <+ such
that V (0) = 0 and V (x) > 0 if x 6= 0. If either
(i) V̇ (φ) > 0 for all φ in G for which

V [φ(0)] = −s ≤ t ≤ 0maxV [φ(s)] > 0
or
(ii) V̇ (φ) > 0 for all φ in G for which

V [φ(0)] = −s ≤ t ≤ 0minV [φ(s)] > 0,
then x = 0 of ẋ = F (xt) is unstable (see Haddock and Ko [3]).



On the instability of solutions of an eighth order nonlinear ... 47

2. The main results

The main result of this paper is given by the following theorem.

Theorem. Together with all the assumptions imposed to the functions f6,
f7 and f8 in Eq. (1.3), we assume that there exist constants a1, a2 and a4
such that the conditions

a1 > 0, a2 < 0, a4 > 0, f6(x2) ≤ 0

x1f8(x1, ..., x8(t− r)) > 0, (x1 6= 0),

hold for arbitrary x1, x1(t− r), ..., x8(t− r). Then, the zero solution, x = 0,
of Eq. (1.3) is unstable.

Remark. Note that there is not any restriction on the function f7. Next,
the proof of the above theorem is based on the instability criteria of Krasovskii
[5]. According to these criteria, it is necessary to show here that there ex-
ists a Lyapunov function V ≡ V (x1, x2, ..., x8) which has the following three
properties, Krasovskii properties, say (K1), (K2) and (K3):

(K1) In every neighborhood of (0, 0, 0, 0, 0, 0, 0, 0), there exists a point
(ξ1, ξ2, ..., ξ8) such that V (ξ1, ξ2, ..., ξ8) > 0,

(K2) the time derivative V̇ ≡ d
dt(x1, x2, ..., x8) along solution paths of (1.4)

is positive semi-definite,

(K3) the only solution (x1, x2, ..., x8) = (x1(t), x2(t), ..., x8(t)) of (1.4) which
satisfies
d
dtV (x1, x2, ..., x8) = 0, (t ≥ 0), is the trivial solution (0, 0, 0, 0, 0, 0, 0, 0).

Proof. Consider the function V = V (x1, x2, ..., x8) defined by

V = − x1x8 − a1x1x7 − a2x1x6 − a3x1x5 − a4x1x4 − a5x1x3
+x2x7 + a1x2x6 + a2x2x5 + a3x2x4 + a4x2x3
+1
2a5x

2
2 − x3x6 − a1x3x5 − a2x3x4 − 1

2a3x
2
3

+x4x5 +
1
2a1x

2
4 − x1

x2R
0
f6(s)ds−

x1R
0
f7(s)sds.(2.1)

It follows that

V (0, 0, 0, 0, 0, 0, 0, 0) = 0

and

V (0, 0, 0, ε, 0, 0, 0, 0) =
1

2
a1ε

2 > 0
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for all sufficiently small ε so that every neighborhood of the origin in the
(x1, x2, ..., x8)− space contains points (ξ1, ξ2, ..., ξ8) such that V (ξ1, ξ2, ..., ξ8) >
0, which verifies the property (K1) of Krasovskii [5].

Let
(x1, x2, ..., x8) = (x1(t), x2(t), ..., x8(t))

be an arbitrary solution of (1.4).
Along solutions of the system (1.4), we obtain the time derivative of the

function V in (2.1) as the following:

V̇ ≡ dV

dt
= x25 − a2x

2
4 + a4x

2
3 + f8(x1, ..., x8(t− r))x1 − x2

x2Z
0

f6(s)ds.

In view of the assumptions a2 < 0, a4 > 0, f6(x2) ≤ 0 and x1f8(.) >
0, (x1 6= 0), it follows that

V̇ = x25 − a2x
2
4 + a4x

2
3 + f8(x1, , ..., x8(t− r))x1 − x2

x2Z
0

f6(s)ds > 0.

Thus, if the assumptions of the theorem hold then V̇ is positive semi
definite, which verifies the property (K2) of Krasovskii [5].

On the other hand, V̇ = 0 for all t ≥ 0 necessarily implies that x1 = 0
and therefore also that

x1 = x = 0, x2 = x0 = 0, x3 = x00 = 0, x4 = x000 = 0, x5 = x(4) = 0,

x6 = x(5) = 0, x7 = x(6) = 0, x8 = x(7) = 0

for all t ≥ 0. Hence,

x1 = x2 = x3 = x4 = x5 = x6 = x7 = x8 = 0, (t ≥ 0).
Furthermore, in view of d

dtV (x1, x2, ..., x8) = 0 and the system (1.4), we
can also easily obtain x1 = x2 = x3 = x4 = x5 = x6 = x7 = x8 = 0 since
f8(ξ1, ..., ξ8(t− r)) = 0 if and only if ξ1 = 0,
which verifies the property (K3) of Krasovskii [5]. It now follows that
the Lyapunov function V thus has all the requisite Krasovskii properties
subject to the conditions in the theorem. By the above discussion, we
conclude that the zero solution of Eq. (1.3) is unstable. The proof of the
theorem is completed.
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