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1. Introduction and Preliminaries

Uncertainty is an extremely important feature of the real world. How do
we understand uncertainty? How do we model uncertainty? In order to an-
swer those questions, an uncertainty theory was founded by Liu [8] in 2007
and refined by Liu [9] in 2009. Nowadays uncertainty theory has become a
branch of mathematics for modeling human uncertainty.

Let ω be the family of all real or complex sequences. Any subspace of
ω is called sequence space.

Definition 1.1. An Orlicz function is a function M : [0,∞) → [0,∞),
which is continuous, non-decreasing and convex withM(0) = 0,M(x) > 0
for x > 0 andM(x)→∞ as x→∞. If convexity of Orlicz functionM is
replaced by

M(x+ y) ≤M(x) +M(y),

then this function is called Modulus function.

Lindenstrauss and Tzafriri [6] used the idea of Orlicz function to con-
struct the sequence space

cM =

(
x ∈ ω :

∞X
k=1

M
µ |xk|

ρ

¶
<∞, for some ρ > 0

)
.

The space cM with the norm

kxk = inf
(
ρ > 0 :

∞X
k=1

M
µ |xk|

ρ

¶
≤ 1

)
,

becomes a Banach space, which is called an Orlicz sequence space. Linden-
strauss and Tzafriri [6] proved that every Orlicz sequence space cM contains
a subspace isomorphic to c0 or some cp, positively for a class of spaces.

The space cM is closely related to the space cp which is an Orlicz se-
quence space withM(x) = xp; 1 ≤ p ≤ ∞.

The concept of Orlicz function has been applied for studying different
classes of sequences by Krasnoselskii and Rutitsky [5], Lindenstrauss [7],
Et et.al [10], Tripathy and Dutta [14], Tripathy and Dutta [15], Tripathy
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352 Pankaj Kumar Nath and Binod Chandra Tripathy

2. Convergence Concepts of Complex Uncertain Sequences

Complex uncertain sequence is a sequence of complex uncertain variables
indexed by integers. In this section, we discuss about five convergence
concepts of complex uncertain sequence: convergence almost surely(a.s.),
convergence in measure, convergence in mean, convergence in distribution
and convergence uniformly almost surely(a.s.).

Definition 2.1.(Chen, Ning, Wang [2]) The complex uncertain sequence
{ζn} is said to be convergent almost surely(a.s.) to ζ if there exists an event
Λ with M{Λ} = 1 such that

lim
n→∞

kζn(γ)− ζ(γ)k = 0,

for every γ ∈ Λ. In that case we write ζn → ξ, a.s.

Definition 2.2.(Chen, Ning, Wang [2]) The complex uncertain sequence
{ζn} is said to be convergent in measure to ζ if

lim
n→∞

M{kζn − ζk ≥ ε} = 0,

for every ε > 0.

Definition 2.3.(Chen, Ning, Wang [2]) The complex uncertain sequence
{ζn} is said to be convergent in mean to ζ if

lim
n→∞

E[kζn − ζk] = 0.

Definition 2.4.(Chen, Ning, Wang [2]) Let Φ,Φ1,Φ2, ... be the complex
uncertainty distributions of complex uncertain variables ζ, ζ1, ζ2, ..., respec-
tively. We say the complex uncertain sequence {ζn} converges in distribu-
tion to ζ if

lim
n→∞

Φn(c) = Φ(c),

for all c at which Φ(c) is continuous.

Definition 2.5.(Chen, Ning, Wang [2]) The complex uncertain sequence
{ζn} is said to be convergent uniformly almost surely(a.s.) to ζ if there
exists an sequence of events {E0k}, M{E0k} → 0 such that {ζn} converges
uniformly to ζ in Γ−E0k, for any fixed k ∈ N .
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Statistical convergence of complex uncertain sequences defined... 353

3. Main Results

In this section we define the statistical version of sequence spaces given by
Orlicz function for uncertain variables.

Definition 3.1. The sequence spaces given by Orlicz function for the
complex uncertain sequences {ζn} which are statistically convergent almost
surely(s.a.s.) to ζ is

c(M; s.a.s) =

(
{ζn} : ζn →s.a.s ζ and

∞X
k=1

M
µ |ξk|

ρ

¶
<∞, for some ρ > 0

)
.

Definition 3.2. The sequence spaces given by Orlicz function for the
complex uncertain sequences {ζn} which are statistically convergent in mea-
sure(s.m) to ζ is

c(M; s.m) =

(
{ζn} : ζn →s.m ζ and

∞X
k=1

M
µ |ξk|

ρ

¶
<∞, for some ρ > 0

)
.

Definition 3.3. The sequence spaces given by Orlicz function for the com-
plex uncertain sequences {ζn}which are statistically convergent in mean(s.mean)
to ζ is

c(M; s.mean) =

(
{ζn} : ζn →s.mean ζ and

∞X
k=1

M
µ |ξk|

ρ

¶
<∞, for some ρ > 0

)
.

Definition 3.4. Let Φ,Φ1,Φ2, ... be the complex uncertainty distributions
of complex uncertain variables ζ, ζ1, ζ2, ..., respectively. Then the sequence
spaces given by Orlicz function for the complex uncertain sequences {ζn}
which are statistically converges in distribution(s.dis) to ζ is

c(M; s.dis) =

(
{ζn} : lim

n→∞
Φn(c) = Φ(c) and

∞X
k=1

M
µ |ξk|

ρ

¶
<∞, for some ρ > 0

)
.

Definition 3.5. The sequence spaces given by Orlicz function for the com-
plex uncertain sequences {ζn} which are statistically convergent uniformly
almost surely(s.u.a.s.) to ζ is

c(M;u.a.s) =

(
{ζn} : ζn →u.a.s ζ and

∞X
k=1

M
µ |ξk|

ρ

¶
<∞, for some ρ > 0

)
.
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354 Pankaj Kumar Nath and Binod Chandra Tripathy

We establish the relationship between the above classes of sequences in
this section.

Theorem 3.1. c(M; s.mean) ⊆ c(M; s.m).

Proof. Let ζn ∈ c(M; s.mean). Then by definition there exists ζ ∈
c(M; s.mean) such that

lim
n→∞

1

n
|{k ≤ n : E[kζk − ζk] ≥ ε}| = 0,

for every

ε > 0 and
∞X
k=1

M
µ |ξk|

ρ

¶
<∞, for some ρ > 0.

It follows from the Markov inequality that for any given ε, δ > 0, we
have

lim
n→∞

1

n
|{k ≤ n :M(kζk−ζk ≥ ε) ≥ δ}| ≤ lim

n→∞
1

n
|{k ≤ n :

µ
E(kζk − ζk)

ε

¶
≥ δ}|.

Thus {ζn} converges in measure to ζ. Hence we get

ζn →s.m ζ and
∞X
k=1

M
µ |ξk|

ρ

¶
<∞, for some ρ > 0.

This proves the theorem.

Remark 3.1. Converse of above theorem is not true. i.e. c(M; s.m) ⊂
c(M; s.mean) (strict inclusion). Following example illustrate this.

Example 3.1. Consider the uncertainty space (Γ,L,M ) to be γ1, γ2, ...
with

M {Λ} =

⎧⎪⎨⎪⎩
supγn∈Λ

1
(n+1) , if supγn∈Λ

1
(n+1) < 0.5

1− supγn∈Λc
1

(n+1) , if supγn∈Λc
1

(n+1) < 0.5;

0.5; otherwise,

and the complex uncertain variables be defined by

ζn(γ) =

(
(n+ 1)i, if γ = γn;
0, otherwise,
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Statistical convergence of complex uncertain sequences defined... 355

for n = 1, 2, ... and ζ ≡ 0. For some small number ε, δ > 0 and n ≥ 2, we
have

lim
n→∞

1

n
|{k ≤ n :M (kζk − ζk ≥ ε) ≥ δ}|

= lim
n→∞

1

n
|{k ≤ n :M (γ : kζk(γ)− ζ(γ)k ≥ ε) ≥ δ}|

= lim
n→∞

1

n
|{k ∈ N :M{γn} ≥ δ}| = 0.

thus, the sequence {ζn} statistically converges in measure to ζ. However,
for each n ≥ 2, we have the uncertainty distribution of uncertain variable
kζn − ζk = kζnk is

Φn(x) =

⎧⎪⎨⎪⎩
0, if x < 0;
1− 1

n+1 , if 0 ≤ x < n+ 1;

1, x ≥ n+ 1.

So for each n ≥ 2, we have

lim
n→∞

1

n
|{k ≤ n : E[kζn − ζk− 1]}| =

∙Z n+1

0
1− (1− 1

n+ 1
)dx

¸
− 1 = 0.

That is, the sequence {ζn} does not statistically converge in mean to ζ.

Hence the result follows.

Theorem 3.2. c(M; s.m) ⊆ c(M; s.dis).

Proof. Let c = a+ib be a given continuity point of the complex uncertainty
distribution Φ. On the one hand, for any α > a, β > b, we have

{ξn ≤ a, ηn ≤ b} = {ξn ≤ a, ηn ≤ b, ξ ≤ α, η ≤ β}∪{ξn ≤ a, ηn ≤ b, ξ > α, η > β}

∪{ξn ≤ a, ηn ≤ b, ξ ≤ α, η > β} ∪ {ξn ≤ a, ηn ≤ b, ξ > α, η ≤ β}
⊂ {ξ ≤ α, η ≤ β} ∪ {|ξn − ξ| ≥ α− a} ∪ {|ηn − η| ≥ β − b}.

It follows from the subadditivity axiom that

Φn(c) = Φn(a+ib) ≤ Φ(α+iβ)+M{|ξn−ξ| ≥ α−a}+M{|ηn−η| ≥ β−b}.

Since {ξn} and {ηn} statistically converges in measure to ξ and η, re-
spectively, so for any small number ε > 0 we have
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356 Pankaj Kumar Nath and Binod Chandra Tripathy

limn→∞
1
n |{k ≤ n :M(kξk − ξk ≥ α− a) ≥ ε}| = 0 and limn→∞

1
n |{k ≤ n :

M(kξk − ξk ≥ β − b) ≥ ε}| = 0.

Thus we obtain lim supn→∞Φn(c) ≤ Φ(α + iβ) for any α > a, β > b.
Taking α+ iβ → a+ ib, we get

lim sup
n→∞

Φn(c) ≤ Φ(c).(3.1)

On the other hand, for any x < a, y < b we have

{ξ ≤ x, η ≤ y} = {ξn ≤ a, ηn ≤ b, ξ ≤ x, η ≤ y}∪{ξn ≤ a, ηn ≤ b, ξ ≤ x, η ≤ y}

∪{ξn > a, ηn ≤ b, ξ ≤ x, η ≤ y} ∪ {ξn > a, ηn > b, ξ ≤ x, η ≤ y}

⊂ {ξn ≤ a, ηn ≤ b} ∪ {|ξn − ξ| ≥ a− x} ∪ {|ηn − η| ≥ b− y}.

Which implies

Φ(x+ iy) ≤ Φn(a+ ib) +M{|ξn − ξ| ≥ a− x}+M{|ηn − η| ≥ b− y}.

Since limn→∞
1
n |{k ≤ n :M(kξk−ξk ≥ a−x) ≥ ε}| = 0 and limn→∞

1
n |{k ≤

n :M(kξk − ξk ≥ b− y) ≥ ε}| = 0, we obtain
Φ(x+ iy) ≤ lim infn→∞Φn(a + ib) for any x < a, y < b. Taking x+ iy →
a+ ib, we get

Φ(c) ≤ lim inf
n→∞

Φn(c).(3.2)

It follows from (1) and (2) that Φn(c) → Φ(c) as n → ∞. That is the
complex uncertain sequence {ζn} is statistically convergent in distribution
to ζ = ξ + iη. Hence the result follows.

Remark 3.2. Converse of the above theorem is not necessarily true. i.e.
c(M; s.dis) ⊂ c(M; s.m) (strict inclusion). Following example illustrate
this.

Example 3.2. Consider the uncertainty space (Γ,L,M ) to be {γ1, γ2}
with M{γ1} =M{γ2} = 1

2 . We define a complex uncertain variable as

ζ(γ) =

(
i, if γ = γ1;
−i, if γ = γ2.
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Statistical convergence of complex uncertain sequences defined... 357

We also define ζn = −ζ for n = 1, 2, .... Then ζn and ζ have the same
distribution

Φn(c) = Φn(a+ ib) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if a < 0,−∞ < b < +∞
0, if a ≥ 0, b < −1
1
2 , if a ≥ 0,−1 ≤ b < 1
1, if a ≥ 0, b ≥ 1.

Then {ζn} Statistical convergence in distribution to ζ. However, for a given
ε > 0, we have

lim
n→∞

1

n
|{k ≤ n :M(kζk − ζk ≥ ε) ≥ 1}|

= lim
n→∞

1

n
|{k ≤ n :M (γ : kζk(γ)− ζ(γ)k ≥ ε) ≥ 1}| = 0.

That is the sequence {ζn} does not statistically converge in measure
to ζ. By Theorem 5.2, the real part and imaginary part of {ζn} also not
statistically convergent in measure.
In addition, since ζn = −ζ for n = 1, 2, ...., the sequence {ζn} does not
statistically converge a.s to ζ.

{ζn} ∈ c(M; s.a.s) does not imply {ζn} ∈ c(M; s.m).

Example 3.3. Consider the uncertainty space (Γ,L,M ) to be γ1, γ2, ...
with

M {Λ} =

⎧⎪⎨⎪⎩
supγn∈Λ

n
(2n+1) , if supγn∈Λ

n
(2n+1) < 0.5

1− supγn∈Λc
n

(2n+1) , if supγn∈Λc
n

(2n+1) < 0.5

0.5, otherwise,

Then we define a complex uncertain variables by

ζn(γ) =

(
in, if γ = γn
0, otherwise

for n = 1, 2, ... and ζ ≡ 0. Then the sequence {ζn} Statistically convergence
a.s to ζ. However for some small number ε > 0, we have

lim
n→∞

1

n
|{k ≤ n :M (kζk − ζk ≥ ε) ≥ 1

2
}|

= lim
n→∞

1

n
|{k ≤ n :M (γ : kζk(γ)− ζ(γ)k ≥ ε) ≥ 1

2
}|
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= lim
n→∞

1

n
|{k ∈ N :M{γn} ≥

1

2
}| = 0.

as n → ∞. That is the sequence {ζn} does not statistically converge in
measure to ζ.

In addition the complex uncertainty distributions of ζn are given by

Φn(c) = φn(a+ ib) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if a < 0,−∞ < b < +∞;
0, if a ≥ 0, b < 0;
1− n

2n+1 , if a ≥ 0, 0 ≤ b < n;

1, a ≥ 0, b ≥ n.

for n = 1, 2, ..., respectively. The complex uncertainty distribution of ζ is
given by

Φ(c) =

⎧⎪⎨⎪⎩
0, if a < 0,−∞ < b < +∞;
0, if a ≥ 0, b < 0;
1, a ≥ 0, b ≥ 0.

Clearly Φn(c) does not converge to Φ(c) at a ≥ 0, b ≥ 0. That is, the
sequence {ζn} does not converge to ζ in distribution.

Remark 3.3. c(M; s.m) also does not imply c(M; s.a.s).

Example 3.4. Consider the uncertainty space (Γ,L,M ) to be [0, 1] with
Borel algebra and Lebesgue measure. For any positive integer n, there is
an integer m such that n = 2m + k where k is an integer between 0 and
2m − 1. Then we define a complex uncertain variable by

ζn(γ) =

(
i, if k

2m ≤ γ ≤ (k+1)
2m ;

0, otherwise,

for n = 1, 2, ... and ζ ≡ 0. For some small number ε, δ > 0 and n ≥ 2, we
have

lim
n→∞

1

n
|{k ≤ n :M (kζk − ζk ≥ ε) ≥ δ}|

= lim
n→∞

1

n
|{k ≤ n :M (γ : kζk(γ)− ζ(γ)k ≥ ε) ≥ δ}|
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= lim
n→∞

1

n
|{k ∈ N :M{γn} ≥ δ}| = 0.

as n → ∞. So the sequence {ζn} statistically converges in measure to ζ.
In addition for every ε > 0 we have

lim
n→∞

1

n
|{k ≤ n : E[kζk − ζk] ≥ ε}| = 0

as n→∞. Thus the sequence {ζn} also statistically converges in mean to
ζ.
However, for any γ ∈ [0, 1], there is an infinite number of intervals of the
form [ k2m ,

k+1
2m ] containing γ. Thus ζn(γ) does not statistically converge to

0. In other words, the sequence {ζn} does not statistically converge a.s to ζ.

Theorem 3.3. {ζn} ∈ c(M; s.a.s) does not imply {ζn} ∈ c(M; s.mean).

Following example illustrate this.

Example 3.5. Consider the uncertainty space (Γ,L,M ) to be γ1, γ2, ...
with

M {Λ} =
X
γn∈Λ

1

2n
.

The complex uncertain variables are defined by

ζn(γ) =

(
i2n, if γ = γn;
0, otherwise,

for n = 1, 2, ... and ζ ≡ 0. Then the sequence {ζn} is statistically conver-
gence a.s to ζ. However, the uncertainty distributions of ζn are given by

Φn(x) =

⎧⎪⎨⎪⎩
0, if x < 0;
1− 1

2n , if 0 ≤ x < 2n;
1, x ≥ 2n.

for n = 1, 2, ..., respectively. Then we have

lim
n→∞

1

n
|{k ≤ n : E[kζk − ζk] ≥ 1}| = 0

So the sequence {ζn} does not statistically converge in mean to ζ.
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From Example 3.4, we can obtain that statistically convergence in mean
does not imply statistically convergence a.s..

Proposition 3.4. Let ζ, ζ1, ζ2, ... be complex uncertain variables. Then
{ζn} statistically converges a.s to ζ if and only if for any ε, δ > 0, we have

lim
n→∞

1

n
|{k ≤ n : M

Ã ∞\
k=1

∞[
n=k

kζk − ζk ≥ ε

!
≥ δ}| = 0.

Proof. By the definition of statistical convergence a.s., we have that there
exists an event Λ with M {Λ} = 1 such that limn→∞

1
n |{k ≤ n : kζk − ζk ≥

ε}| = 0 for every ε > 0. Then for any ε > 0, there exists k such that
kζn − ζk < ε where n > k and for any γ ∈ Λ, that is equivalent to

lim
n→∞

1

n
|{k ≤ n : M

Ã ∞\
k=1

∞[
n=k

kζk − ζk < ε

!
≥ 1}| = 0.

It follows from the duality axiom of uncertain measure that

lim
n→∞

1

n
|{k ≤ n : M

Ã ∞\
k=1

∞[
n=k

kζk − ζk ≥ ε

!
≥ δ}| = 0.

Proposition 3.5. Let ζ, ζ1, ζ2, ... be complex uncertain variables. Then
{ζn} statistically converges uniformly a.s to ζ if and only if for any ε, δ > 0,
we have

lim
n→∞

1

n
|{k ≤ n : M

Ã ∞[
n=k

kζk − ζk ≥ ε

!
≥ δ}| = 0.

Proof. If {ζn} statistically converges uniformly a.s to ζ, then for any
δ > 0 there exists B such that M {B} < δ and {ζn} statistically uniformly
converges to ζ on Γ−B. Thus, for any ε > 0, there exists k > 0 such that
kζn − ζk < ε where n ≥ k and γ ∈ Γ−B. That is

∞[
n=k

{kζn − ζk ≥ ε} ⊂ B.

It follows from the subadditivity axiom of uncertain measure that

lim
n→∞

1

n
|{k ≤ n : M

Ã ∞[
n=k

kζk − ζk ≥ ε

!
}| ≤ δ(M {B}) < δ.
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Then

lim
n→∞

1

n
|{k ≤ n : lim

n→∞
M

Ã ∞[
n=k

kζk − ζk ≥ ε

!
≥ δ}| = 0.

On the contrary, if limn→∞
1
n |{k ≤ n : limn→∞M (

S∞
n=k kζk − ζk ≥ ε) ≥

δ}| = 0. for any ε > 0, then for given δ > 0 and m ≥ 1, there exists mk

such that

δ

Ã
M

Ã ∞[
n=mk

{kζn − ζk ≥ 1

m
}
!!

<
δ

2m
.

Let B = ∪∞m=1 ∪∞n=mk
{kζn − ζk ≥ 1

m}.
Then

δ(M {B}) ≤
∞X

m=1

δ

Ã
M (

∞[
n=mk

{kζn − ζk ≥ 1

m
})
!
≤

∞X
m=1

δ

2m
.

Furthermore, we have

sup
γ∈Γ−B

kζn − ζk < 1

m

for any m = 1, 2, ... and n > mk. The proposition is thus proved.

Theorem 3.6. If{ζn} ∈ c(M; s.u.a.s), then {ζn} ∈ c(M; s.a.s).

Proof. It follows from above Proposition that if {ζn} statistically converges
uniformly a.s to ζ, then

lim
n→∞

1

n
|{k ≤ n : lim

n→∞
M

Ã ∞[
n=k

kζk − ζk ≥ ε

!
≥ δ}| = 0.

Since

δ

Ã
M

Ã ∞\
k=1

∞[
n=k

{kζn − ζk ≥ ε}
!!
≤ δ

Ã
M

Ã ∞[
n=k

{kζn − ζk ≥ ε}
!!

,

taking the limit as n→∞ on both side of above inequality, we obtain

δ

Ã
M

Ã ∞\
k=1

∞[
n=k

{kζn − ζk ≥ ε}
!!

= 0.

By Proposition 1, {ζn} statistically converges a.s to ζ.
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