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1. Introduction

Let E, Y be normed spaces. A function f : E → Y is Cauchy-Jensen
provided it satisfies the functional equation

f

µ
x+ y

2
+ z

¶
+ f

µ
x− y

2
+ z

¶
= f(x) + 2f(z) for all x, y, z ∈ E,

(1.1)

and we can say that f : E → Y is Cauchy-Jensen on E0 if it satisfies (1.1)
for all x, y, z ∈ E0 such that

x+y
2 + z 6= 0 and x−y

2 + z 6= 0.
Recently, interesting results concerning the Cauchy-Jensen functional equa-
tion (1.1) have been obtained in [7] and [20].

Throughout this paper, we will denote the set of natural numbers by
N, N0 := N ∪ {0} and the set of real numbers by R. By Nm, m ∈ N, we
will denote the set of all natural numbers greater than or equal to m.

Let R+ = [0,∞) the set of nonnegative real numbers. We write BA to
mean the family of all functions mapping from a nonempty set A into a
nonempty set B and we use the notation E0 for the set E\{0}.

We need to recall some basic facts concerning 2-normed spaces and some
preliminary results (see, for instance, [17]).

Definition 1.1. let X be a real linear space with dimX > 1 and k·, ·k :
X ×X −→ R+ be a function satisfying the following properties:

1. kx, yk = 0 if and only if x and y are linearly dependent,

2. kx, yk = ky, xk,

3. kλx, yk = |λ|kx, yk,

4. kx, y + zk ≤ kx, yk+ kx, zk,

for all x, y, z ∈ X and λ ∈ R. Then the function k·, ·k is called a 2-norm
on X and the pair (X, k·, ·k) is called a linear 2-normed space. Sometimes
the condition (4) called the triangle inequality.
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Example 1.2. For x = (x1, x2), y = (y1, y2) ∈ E = R2, the Euclidean
2-norm kx, ykE is defined by

kx, ykE = |x1y2 − x2y1| .

Definition 1.3. A sequence {xk} in a 2-normed space X is called a con-
vergent sequence if there is an x ∈ X such that

lim
k→∞

kxk − x, yk = 0,

for all y ∈ X. If {xk} converges to x, write xk −→ x with k −→ ∞ and
call x the limit of {xk}. In this case, we also write limk→∞ xk = x.

Definition 1.4. A sequence {xk} in a 2-normed space X is said to be a
Cauchy sequence with respect to the 2-norm if

lim
k,l→∞

kxk − xl, yk = 0,

for all y ∈ X. If every Cauchy sequence in X converges to some x ∈ X,
then X is said to be complete with respect to the 2-norm. Any complete
2-normed space is said to be a 2-Banach space.

Next, it is easily seen that we have the following property.

Lemma 1.5. If X is a linear 2-normed space, x, y1, y2 ∈ X, y1, y2 are
linearly independent, and

kx, y1k = kx, y2k = 0,

then x = 0.

Let us yet recall a lemma from [19].

Lemma 1.6. If X is a linear 2-normed space and (xn)∈N is a convergent
sequence of elements of X, then

lim
n→∞

kxn, yk = k lim
n→∞

xn, yk = 0, y ∈ X.



76 Khaled Yahya Naif Sayar and Amal Bergam

The problem of the stability of functional equations was first raised by
Ulam [21]. This included the following question concerning the stability of
group homomorphisms.

Let (G1, ∗1) be a group and let (G2, ∗2) be a metric group with a metric
d(., .). Given ε > 0, does there exists a δ > 0 such that if a mapping
h : G1 → G2 satisfies the inequality

d
³
h(x ∗1 y), h(x) ∗2 h(y)

´
< δ

for all x, y ∈ G1, then there exists a homomorphism H : G1 → G2 with

d
³
h(x),H(x)

´
< ε

for all x ∈ G1?

If the answer is affirmative, we say that the equation of homomorphism

h(x ∗1 y) = h(x) ∗2 H(y)

is stable.

The first partial answer to Ulam’s question was given by Hyers [18] and
he established the stability result as follows:

Theorem 1.7. [18] Let E1 and E2 be two Banach spaces and f : E1 → E2
be a function such that

kf(x+ y)− f(x)− f(y)k ≤ δ

for some δ > 0 and for all x, y ∈ E1. Then the limit

A(x) := lim
n→∞

2−nf(2nx)

exists for each x ∈ E1, and A : E1 → E2 is the unique additive function
such that

kf(x)−A(x)k ≤ δ

for all x ∈ E1. Moreover, if f(tx) is continuous in t for each fixed x ∈ E1,
then the function A is linear.
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Later, T. Aoki [4] and D. G. Bourgin [8] considered the problem of
stability with unbounded Cauchy differences. Th. Rassias [21] attempted
to weaken the condition for the bound of the norm of Cauchy difference

kf(x+ y)− f(x)− f(y)k

and proved a generalization of Theorem 1.7 using a direct method (cf.
Theorem 1.8):

Theorem 1.8. [24] Let E1 and E2 be two Banach spaces. If f : E1 → E2
satisfies the inequality

kf(x+ y)− f(x)− f(y)k ≤ θ
³
kxkp + kykp

´
for some θ ≥ 0, for some p ∈ R with 0 ≤ p < 1, and for all x, y ∈ E1, then
there exists a unique additive function A : E1 → E2 such that

kf(x)−A(x)k ≤ 2θ

2− 2pkxk
p

for each x ∈ E1. If, in addition, f(tx) is continuous in t for each fixed
x ∈ E1, then the function A is linear.

Later, Th. Rassias [22],[23] motivated Theorem 1.8 as follows:

Theorem 1.9. [22],[23] Let E1 be a normed space, E2 be a Banach space,
and f : E1 → E2 be a function. If f satisfies the inequality

kf(x+ y)− f(x)− f(y)k ≤ θ
³
kxkp + kykp

´
(1.2)

for some θ ≥ 0, for some p ∈ R with p 6= 1, and for all x, y ∈ E1 − {0E1},
then there exists a unique additive function A : E1 → E2 such that

kf(x)−A(x)k ≤ 2θ

|2− 2p|kxk
p(1.3)

for each x ∈ E1 − {0E1}.

Note that Theorem 1.9 reduces to Theorem 1.7 when p = 0. For p = 1,
the analogous result is not valid. Also, J. Brzdȩk [9] showed that estimation
(1.3) is optimal for p ≥ 0 in the general case.

Recently, J. Brzdȩk [14] showed that Theorem 1.9 can be significantly
improved; namely, in the case p < 0, each f : E1 → E2 satisfying (1.2)
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must actually be additive, and the assumption of completeness of E2 is not
necessary. Unfortunately, this result does not remain valid if we restrict
the domain of f (see the further detail in [16]). On the other hand, several
mathematicians showed that the fixed point method is an another very
efficient and convenient tool for proving the Hyers-Ulam stability for a quite
wide class of functional equations (see [15]). J. Brzdȩk et al. [10] proved
the fixed point theorem for a nonlinear operator in metric spaces and used
this result to study the Hyers-Ulam stability of some functional equations
in non-Archimedean metric spaces. In this work, they also obtained the
fixed point result in arbitrary metric spaces as follows:

By using this theorem, Brzdȩk [13] improved, extended and comple-
mented several earlier classical stability results concerning the additive
Cauchy equation (in particular Theorem 1.9). During the past few years
many mathematicians have investigated various generalizations, extensions
and applications of the Hyers-Ulam stability of a number of functional equa-
tions (see, for instance, [1, 2, 3, 5, 6, 15, 16, 12] and references therein).

Now, we present the fixed point theorem concerning 2-Banach spaces
given in [11]. First, we need the following hypotheses:

(H1) E is a nonempty set,
³
Y, k·, ·k

´
is a 2-Banach space, Y0 is a subset

of Y containing two linearly independent vectors, j ∈ N, fi : E → E,
gi : Y0 → Y0, and Li : E × Y0 → R+ for i = 1, ..., j;

(H2) T : Y E → Y E is an operator satisfying the inequality

°°°T ξ(x)−T µ(x), y°°° ≤ jX
i=1

Li(x, y)

°°°°ξ³fi(x)´−µ³fi(x)´, gi(y)°°°°, ξ, µ ∈ Y E, x ∈ E, y ∈ Y0;

(1.4)
(H3) Λ : RE×Y0

+ → RE×Y0
+ is an operator defined by

Λδ(x, y) :=
jX

i=1

Li(x, y)δ
³
fi(x), gi(y)

´
, δ ∈ RE×Y0

+ , x ∈ E, y ∈ Y0.(1.5)

Theorem 1.10. [11] Let hypotheses (H1)-(H3) hold and functions ε : E×
Y0 → R+ and ϕ : E → Y fulfill the following two conditions:°°°°T ϕ(x)− ϕ(x), y

°°°° ≤ ε(x, y) x ∈ E, y ∈ Y0,(1.6)
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ε∗(x, y) :=
∞X
n=0

³
Λnε

´
(x, y) <∞ x ∈ E, y ∈ Y0.(1.7)

Then, there exists a unique fixed point ψ of T for which°°°ϕ(x)− ψ(x), y
°°° ≤ ε∗(x, y) x ∈ E, y ∈ Y0.(1.8)

Moreover,

ψ(x) := lim
n→∞

(T nϕ)(x) x ∈ E.(1.9)

2. Main results

In this section, we prove some stability and hyperstability results for the
Cauchy-Jensen equation (1.1) in 2-Banach spaces by using Theorem 1.10.
In what follows (Y, k·, ·k) is a real 2-Banach space.

Theorem 2.1. Let h1, h2, h3 : E0×Y0 → R+ be three functions such that

U := {n ∈ N:αn := λ1(1 + n)λ2(1 + n)λ3(1 + n) + λ1(n)λ2(n)λ3(n) < 1} 6= φ
(2.1)
where

λi(n) := inf {t ∈ R+:hi(nx,w) ≤ t hi(x,w), x ∈ E0, w ∈ Y0}(2.2)

for all n ∈ N, where i = 1, 2, 3. Assume that f : E → Y satisfies the
inequality

°°°°f µx+ y

2
+ z

¶
+ f

µ
x− y

2
+ z

¶
− 2f(z)− f(x), w

°°°° ≤ h1(x,w)h2(y, w)h3(z, w),

(2.3)
for all x, y, z,∈ E0, w ∈ Y0 such that

x+y
2 + z 6= 0 and x−y

2 + z 6= 0. Then
there exists a unique Cauchy-Jensen function F : E → Y such that
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°°°f(x)− F (x), w
°°° ≤ λ0h1(x,w)h2(x,w)h3(x,w)(2.4)

for all x ∈ E0, w ∈ Y0, where

λ0 := inf
n∈U

½
λ1(n)λ2(n)

1− λ1(1 + n)λ2(1 + n)λ3(1 + n)− λ1(n)λ2(n)λ3(n)

¾
.

Proof. Replacing y and x with mx and z with x, where x ∈ E0 and
m ∈ N, in inequality (2.3) we get

°°°f³(1 +m)x
´
− f(mx)− f(x), w

°°° ≤ h1(mx,w)h2(mx,w)h3(x,w)(2.5)

for all x ∈ E0, w ∈ Y0. For each m ∈ N, we define the operator Tm : Y E0 →
Y E0 by

Tmξ(x) := ξ
³
(1 +m)x

´
− ξ(mx), ξ ∈ Y E0 , x ∈ E0.(2.6)

Further put

εm(x,w) := h1(mx,w)h2(mx,w)h3(x,w), x ∈ E0, w ∈ Y0,(2.7)

and observe that

εm(x,w) = h1(mx,w)h2(mx,w)h3(x,w) ≤ λ1(m)λ2(m)h1(x,w)h2(x,w)h3(x,w),
(2.8)
for all x ∈ E0, w ∈ Y0,m ∈ N. Then the inequality (2.5) takes the form°°°f(x)− Tmf(x), w°°° ≤ εm(x,w), x ∈ E0, w ∈ Y0.(2.9)

Furthermore, for every x ∈ E0, w ∈ Y0, ξ, µ ∈ Y E0 , we obtain°°°°Tmξ(x)− Tmµ(x), w°°°° =

°°°°ξ³(1 +m)x
´
− ξ(mx)− µ

³
(1 +m)x

´
+ µ(mx), w

°°°°
≤
°°°°(ξ − µ)

³
(1 +m)x

´
, w

°°°°+ °°°°(ξ − µ)(mx), w

°°°°.
So, (H2) is valid for Tm.

This brings us to define the operator Λm : R
E0×Y0
+ → RE0×Y0

+ by

Λmδ(x,w) := δ
³
(1 +m)x,w

´
+ δ(mx,w), δ ∈ RE0×YO

+ , x ∈ E0, w ∈ Y0.
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(2.10)

For eachm ∈ N, the above operator has the form described in (H3) with
f1(x) = (1 +m)x, f2(x) = mx, g1(w) = g2(w) = w and L1(x) = L2(x) = 1
for all x ∈ E0. By induction, we will show that for each x ∈ E0, w ∈ Y0,
n ∈N0, and m ∈ U we have

(Λnmεm)(x,w) ≤ λ1(m)λ2(m)α
n
mh1(x,w)h2(x,w)h3(x,w)(2.11)

where

αm = λ1(1 +m)λ2(1 +m)λ3(1 +m) + λ1(m)λ2(m)λ3(m).

From (2.7) and (2.8), we obtain that the inequality (2.11) holds for
n = 0. Next, we will assume that (2.11) holds for n = k, where k ∈ N.
Then we have
(Λk+1m εm)(x,w) = Λm

³
(Λkmεm)(x,w)

´
= (Λkmεm)

³
(1 +m)x,w

´
+ (Λkmεm)(mx,w)

≤ λ1(m)λ2(m)α
k
mh1((1 +m)x,w)h2((1 +m)x,w)h3((1 +m)x,w)

+λ1(m)λ2(m)α
k
mh1(mx,w)h2(mx,w)h3(mx,w)

≤ λ1(m)λ2(m)α
k+1
m h1(x,w)h2(x,w)h3(x,w)

for all x ∈ E0, w ∈ Y0, m ∈ U . This shows that (2.11) holds for n = k + 1.
Now we can conclude that the inequality (2.11) holds for all n ∈ N0. Hence,
we obtain

ε∗m(x,w) =
P∞

n=0(Λ
n
mεm)(x,w)

≤P∞
n=0 λ1(m)λ2(m)α

n
mh1(x,w)h2(x,w)h3(x,w)

= λ1(m)λ2(m)
1−αm h1(x,w)h2(x,w)h3(x,w) <∞

for all x ∈ E0, w ∈ Y0, m ∈ U . Therefore, according to Theorem 1.10 with
ϕ = f , we get that the limit

Fm(x) := lim
n→∞

³
T n
mf
´
(x)

exists for each x ∈ E0 and m ∈ U , and

°°°f(x)−Fm(x), w°°° ≤ λ1(m)λ2(m)h1(x,w)h2(x,w)h3(x,w)

1− αm
, x ∈ E0, w ∈ Y0, m ∈ U .

(2.12)
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To prove that Fm satisfies the functional equation (1.1), just prove the
following inequality

°°°°(T n
mf)

³
x+y
2 + z

´
+ (T n

mf)
³
x−y
2 + z

´
− 2(T n

mf)(z)− (T n
mf)(x), w

°°°°
≤ αnmh1(x,w)h2(y, w)h3(z, w)

(2.13)

for every x, y, z ∈ E0 such that
x+y
2 +z 6= 0 and

x−y
2 +z 6= 0, w ∈ Y0, n ∈N0,

and m ∈ U . Since the case n = 0 is just (2.3), take k ∈ N and assume
that (2.13) holds for n = k and every x, y, z ∈ E0 such that

x+y
2 + z 6= 0

and x−y
2 + z 6= 0, w ∈ Y0, m ∈ U . Then, for each x, y, z ∈ E0, w ∈ Y0 and

m ∈ U , we get°°°°(T k+1
m f)

³
x+y
2 + z

´
+ (T k+1

m f)
³
x−y
2 + z

´
− 2(T k+1

m f)(z)− (T k+1
m f)(x), w

°°°°
=

°°°°(T k
mf)f

³
(1 +m)

³
x+y
2 + z

´´
− (T k

mf)f
³
m
³
x+y
2 + z

´´
+(T k

mf)f
³
(1 +m)

³
x−y
2 + z

´´
− (T k

mf)f
³
m
³
x−y
2 + z

´´
−2(T k

mf)f
³
(1 +m)z

´
+ 2(T k

mf)f(mz)− (T k
mf)f

³
(1 +m)x

´
+ (T k

mf)f(mx), w

°°°°
≤
°°°°(T k

mf)f
³
(1 +m)

³
x+y
2 + z

´´
+ (T k

mf)f
³
(1 +m)

³
x−y
2 + z

´´
−2(T k

mf)f
³
(1 +m)z

´
− (T k

mf)f
³
(1 +m)x

´
, w

°°°°+°°°°(T k
mf)f

µ
m

µ
x+y
2 + z

¶¶
+ (T k

mf)f

µ
m

µ
x−y
2 + z

¶¶
− 2(T k

mf)f(mz)− (T k
mf)f(mx), w

°°°°
≤ αkmh1

³
(1 +m)x,w

´
h2
³
(1 +m)y, w

´
h3
³
(1 +m)z, w

´
+

αkmh1
³
mx,w

´
h2
³
my,w

´
h3
³
mz,w

´
≤ αk+1m h1(x,w)h2(y, w)h3(z, w)

Thus, by induction, we have shown that (2.13) holds for every x, y, z ∈
E0 such that

x+y
2 + z 6= 0 and x−y

2 + z 6= 0, w ∈ Y0, n ∈ N0, and m ∈ U .
Letting n→∞ in (2.13), we obtain the equality

Fm

µ
x+ y

2
+ z

¶
+ Fm

µ
x− y

2
+ z

¶
= Fm(x) + 2Fm(z),(2.14)
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for all x, y, z ∈ E0 such that
x+y
2 + z 6= 0 and x−y

2 + z 6= 0,m ∈ U0. This
implies that Fm : E0 → Y , defined in this way, is a solution of the equation

F (x) = F
³
(1 +m)x

´
− F (mx), x ∈ E0,m ∈ U .(2.15)

Next, we will prove that each Cauchy-Jensen function F : E → Y
satisfying the inequality

°°°f(x)− F (x), w
°°° ≤ L h1(x,w)h2(x,w)h3(x,w), x ∈ E0, w ∈ Y0(2.16)

with some L > 0, is equal to Fm for each m ∈ U . To this end, we fix
m0 ∈ U and F : E → Y satisfying (2.16). From (2.12), for each x ∈ E0, we
get

°°°F (x)− Fm0(x), w
°°° ≤ °°°F (x)− f(x), w

°°°+ °°°f(x)− Fm0(x), w
°°°

≤ L h1(x,w)h2(x,w)h3(x,w) + ε∗m0
(x,w)

≤ L0 h1(x,w)h2(x,w)h3(x,w)
∞X
n=0

αnm0
,(2.17)

where

L0 := (1 − αm0)L + λ1(m0)λ2(m0) > 0 and we exclude the case that
h1(x,w) ≡ 0, h2(x,w) ≡ 0 or h3(x,w) ≡ 0 which is trivial. Observe that
F and Fm0 are solutions to equation (2.15) for all m ∈ U . Next, we show
that, for each j ∈N0, we have

°°°F (x)−Fm0(x), w
°°° ≤ L0 h1(x,w)h2(x,w)h3(x,w)

∞X
n=j

αnm0
, x ∈ E0, w ∈ Y0.

(2.18)

The case j = 0 is exactly (2.17). We fix k ∈ N and assume that (2.18)
holds for j = k. Then, in view of (2.17), for each x ∈ E0, w ∈ Y0, we get
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°°°F (x)− Fm0(x), w
°°° =

°°°F³(1 +m0)x
´
− F (m0x)

−Fm0

³
(1 +m0)x

´
+ Fm0(m0x), w

°°°
≤
°°°F³(1 +m0)x

´
− Fm0

³
(1 +m0)x

´
, w
°°°

+
°°°F (m0x)− Fm0(m0x), w

°°°
≤ L0 h1

³
(1 +m0)x,w

´
h2
³
(1 +m0)x,w

´
h3
³
(1 +m0)x,w

´P∞
n=k α

n
m0

+L0 h1
³
m0x,w

´
h2
³
m0x,w

´
h3
³
m0x,w

´P∞
n=k α

n
m0

= L0

µ
h1
³
(1 +m0)x,w

´
h2
³
(1 +m0)x,w

´
h3
³
(1 +m0)x,w

´
+h1

³
m0x,w

´
h2
³
m0x,w

´
h3
³
m0x,w

´¶P∞
n=k α

n
m0

≤ L0 αm0h1(x,w)h2(x,w)h3(x,w)
P∞

n=k α
n
m0

= L0 h1(x,w)h2(x,w)h3(x,w)
P∞

n=k+1 α
n
m0

.

This shows that (2.18) holds for j = k + 1. Now we can conclude that
the inequality (2.18) holds for all j ∈ N0. Now, letting j → ∞ in (2.18),
we get

F = Fm0 .(2.19)

Thus, we have also proved that Fm = Fm0 for each m ∈ U , which (in
view of (2.12)) yields

°°°f(x)−Fm0(x), w
°°° ≤ λ1(m)λ2(m)h1(x,w)h2(x,w)h3(x,w)

1− αm
, x ∈ E0, w ∈ Y0,m ∈ U .

(2.20)

This implies (2.4) with F = Fm0 and (2.19) confirms the uniqueness of
F . 2

The following theorem concerns the η-hyperstability of (1.1) in 2-Banach
spaces. Namely, We consider functions f : E → Y fulfilling (1.1) approxi-
mately, i.e., satisfying the inequality

°°°°f µx+ y

2
+ z

¶
+ f

µ
x− y

2
+ z

¶
− 2f(z)− f(x), w

°°°° ≤ η(x, y, z, w),

(2.21)

for all x, y, z ∈ E0 such that
x+y
2 + z 6= 0 and x−y

2 + z 6= 0, w ∈ Y0,
with η : E0 × E0 × E0 × Y0 → R+ is a given mapping. Then we find a
unique Cauchy-Jensen function F : E → Y which is close to f . Then, under
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some additional assumptions on η, we prove that the conditional functional
equation (1.1) is η-hyperstable in the class of functions f : E → Y , i.e., each
f : E → Y satisfying inequality (2.21), with such η, must fulfil equation
(1.1).

Theorem 2.2. Let h1, h2, h3 and U be as in Theorem 2.1. Assume that(
lim
n→∞

λ1(n)λ2(n) = 0,

lim
n→∞

λ1(n)λ2(n)λ3(n) = 0.
(2.22)

Then every f : E → Y satisfying (2.3) is a solution of (1.1).

Proof. Suppose that f : E → Y satisfies (2.3). Then, by Theorem 2.1,
there exists a mapping F : E → Y satisfies (1.1)

and

kf(x)− F (x), wk ≤ λ0h1(x,w)h2(x,w)h3(x,w)(2.23)

for all x ∈ E0, w ∈ Y0, where

λ0 := inf
n∈U

½
λ1(n)λ2(n)

1− λ1(1 + n)λ2(1 + n)λ3(1 + n)− λ1(n)λ2(n)λ3(n)

¾
.

Since, in view of (2.22), λ0 = 0. This means that f(x) = F (x) for all
x ∈ E0, whence

f

µ
x+ y

2
+ z

¶
+ f

µ
x− y

2
+ z

¶
= f(x) + 2f(z),

for all x, y, z ∈ E0 such that
x+y
2 + z 6= 0 and x−y

2 + z 6= 0, which implies
that f satisfies the functional equation (1.1) on E. 2

Corollary 2.3. Let θ ≥ 0, s ≥ 0, p, q, r ∈ R such that p + q + r < 0.
Suppose that f : E → Y such that f(0) = 0 satisfy the inequality

°°°°f µx+ y

2
+ z

¶
+ f

µ
x− y

2
+ z

¶
− 2f(z)− f(x), w

°°°° ≤ θkxkp kykq kzkr kwks,
(2.24)

for all x, y, z ∈ E0 such that
x+y
2 + z 6= 0 and x−y

2 + z 6= 0, w ∈ Y0. Then f
is Cauchy-Jensen on E0.
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Proof. The proof follows from Theorem 2.1 by defining

h1, h2, h3 : E0×Y0 → R+ by h1(x,w) = θ1kxkpkwks1 , h2(y,w) = θ2|y|q|w|s2 ,
h3(z, w) = θ3kzkrkwks3 and h1(0, w) = h2(0, w) = h3(0, w) = 0 with
θ1, θ2, θ3 ∈ R+, s1, s2, s3 ∈ R+ and p, q, r ∈ R such that θ1θ2θ3 = θ,
s1 + s2 + s3 = s and p+ q + r < 0.

For each n ∈ N, we have
λ1(n) = inf {t ∈ R+:h1(nx,w) ≤ t h1(x,w), x ∈ E0, w ∈ Y0}

= inf {t ∈ R+: θ1knxkpkwks1 ≤ t θ1kxkpkwks1 , x ∈ E0, w ∈ Y0}
= np.

Also, we have λ2(n) = nq and λ3(n) = nr for all n ∈ N. Clearly, we
can find n0 ∈ N such that

λ1(1+n)λ2(1+n)λ3(1+n)+λ1(n)λ2(n)λ3(n) = (1+n)
p+q+r+np+q+r < 1, n ≥ n0.

(2.25)

According to Theorem 2.1, there exists a unique Cauchy-Jensen function
F : E → Y such that°°°f(x)− F (x), w

°°° ≤ θλ0h1(x,w)h2(x,w)h3(x,w)(2.26)

for all x ∈ E0, w ∈ Y0, where

λ0 := inf
n∈U

½
λ1(n)λ2(n)

1− λ1(1 + n)λ2(1 + n)λ3(1 + n)− λ1(n)λ2(n)λ3(n)

¾
.

On the other hand, Since p+ q + r < 0, It is sufficient to consider that
p+ q < 0. Then(

lim
n→∞

λ1(n)λ2(n) = limn→∞ np+q = 0,

lim
n→∞

λ1(n)λ2(n)λ3(n) = limn→∞ np+q+r = 0.
(2.27)

Thus by Theorem 2.2, we get the desired results. 2

The next corollary prove the hyperstability results for the inhomoge-
neous Cauchy-Jensen functional equation.

Corollary 2.4. Let θ, p, q, r, s ∈ R such that θ ≥ 0 and p + q + r < 0.
Assume that G : E3 → Y and f : E → Y such that f(0) = 0 and satisfy
the inequality
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