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1. Introduction

Let E, Y be normed spaces. A function f : F — Y is Cauchy-Jensen
provided it satisfies the functional equation

f(wT—i_yﬂLz) +f<%+z) = f(z)+2f(z) forall z,y,z € E,

(1.1)

and we can say that f: E — Y is Cauchy-Jensen on Ej if it satisfies (1.1)
for all z,y,z € Ey such that ZE¥ + 2z £ 0 and Z5¥ + 2 # 0.

Recently, interesting results concerning the Cauchy-Jensen functional equa-
tion (1.1) have been obtained in [7] and [20].

Throughout this paper, we will denote the set of natural numbers by
N, Ny := N U {0} and the set of real numbers by R. By N,,, m € N, we
will denote the set of all natural numbers greater than or equal to m.

Let Ry = [0,00) the set of nonnegative real numbers. We write B4 to
mean the family of all functions mapping from a nonempty set A into a
nonempty set B and we use the notation Ey for the set E\{0}.

We need to recall some basic facts concerning 2-normed spaces and some
preliminary results (see, for instance, [17]).

Definition 1.1. let X be a real linear space with dimX > 1 and ||-,-|| :
X x X — Ry be a function satisfying the following properties:

1. ||z, y|| = 0 if and only if x and y are linearly dependent,

2. Nl yll = lly, «l,

3. 1Az, yll = [Afll, yl,

4wy + 2l < syl + |z, 2],
for all x,y,z € X and A € R. Then the function ||-,-|| is called a 2-norm
on X and the pair (X, |-,-]|) is called a linear 2-normed space. Sometimes

the condition (4) called the triangle inequality.
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Example 1.2. For z = (21,72), ¥ = (y1,%2) € E = R?, the Euclidean
2-norm ||z, y||g is defined by

lz,ylle = [z1y2 — Z211| -

Definition 1.3. A sequence {zj} in a 2-normed space X is called a con-
vergent sequence if there is an x € X such that

k—o00

for all y € X. If {z}} converges to x, write x, — x with k — oo and
call x the limit of {zy}. In this case, we also write limy_,oo T = .

Definition 1.4. A sequence {zy} in a 2-normed space X is said to be a
Cauchy sequence with respect to the 2-norm if

lim ||z —x1,9] =0,

Jim o — a1,y

for all y € X. If every Cauchy sequence in X converges to some x € X,
then X is said to be complete with respect to the 2-norm. Any complete
2-normed space is said to be a 2-Banach space.

Next, it is easily seen that we have the following property.

Lemma 1.5. If X is a linear 2-normed space, z,y1,y2 € X, y1,ys are
linearly independent, and

2, y1ll = [, y2ll = O,

then x = 0.

Let us yet recall a lemma from [19].

Lemma 1.6. If X is a linear 2-normed space and (z,)cN Is a convergent
sequence of elements of X, then

lim ||z, y| = || lim z,,y|| =0, ye X.
n—oo n—oo
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The problem of the stability of functional equations was first raised by
Ulam [21]. This included the following question concerning the stability of
group homomorphisms.

Let (G1,%1) be a group and let (Ga,*2) be a metric group with a metric
d(.,.). Given € > 0, does there exists a 6 > 0 such that if a mapping
h: Gy — Gs satisfies the inequality

d(h(@ 1 ), h(@) 2 h(y)) <
for all x,y € Gy, then there exists a homomorphism H : G1 — Go with
d(h(z), H(z)) < £
forallz e G1?
If the answer is affirmative, we say that the equation of homomorphism
h(z *1y) = h(z) *2 H(y)

is stable.
The first partial answer to Ulam’s question was given by Hyers [18] and
he established the stability result as follows:

Theorem 1.7. [18] Let E1 and E2 be two Banach spaces and f : 1 — E»
be a function such that

If(x+y) = flz) - fyl <6
for some 6 > 0 and for all z,y € F1. Then the limit

A(z) = lim 27" f(2"x)

n—oo

exists for each x € E1, and A : E1 — FE» is the unique additive function
such that

1f(z) — Alz)|| <0

for all x € Ey. Moreover, if f(tx) is continuous in t for each fixed © € Fj,
then the function A is linear.
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Later, T. Aoki [4] and D. G. Bourgin [8] considered the problem of
stability with unbounded Cauchy differences. Th. Rassias [21] attempted
to weaken the condition for the bound of the norm of Cauchy difference

If(x+y) = flz) = fW)

and proved a generalization of Theorem 1.7 using a direct method (cf.
Theorem 1.8):

Theorem 1.8. [24] Let FEy and E3 be two Banach spaces. If f : E1 — E»
satisfies the inequality

| £z +y) = @) = F @) < (" + Iyl

for some 6 > 0, for some p € R with 0 < p < 1, and for all z,y € F, then
there exists a unique additive function A : E1 — FEs such that

20
2-2p

[f(z) = A(@)]| <

l[?

for each x € Ey. If, in addition, f(tx) is continuous in t for each fixed
x € E1, then the function A is linear.

Later, Th. Rassias [22],[23] motivated Theorem 1.8 as follows:

Theorem 1.9. [22],[23] Let E; be a normed space, F5 be a Banach space,
and f : E1 — FEs be a function. If f satisfies the inequality

(1.2) 1f(z+y) = f@) = F)I < 0(l” + Iyl

for some 6 > 0, for some p € R with p # 1, and for all x,y € E1 — {0g, },
then there exists a unique additive function A : By — FE5 such that

20

(13) 1) =A@ < 55

for each x € By —{0g, }.

e

Note that Theorem 1.9 reduces to Theorem 1.7 when p = 0. For p =1,
the analogous result is not valid. Also, J. Brzdek [9] showed that estimation
(1.3) is optimal for p > 0 in the general case.

Recently, J. Brzdek [14] showed that Theorem 1.9 can be significantly
improved; namely, in the case p < 0, each f : Ey — FEj5 satisfying (1.2)
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must actually be additive, and the assumption of completeness of F» is not
necessary. Unfortunately, this result does not remain valid if we restrict
the domain of f (see the further detail in [16]). On the other hand, several
mathematicians showed that the fixed point method is an another very
efficient and convenient tool for proving the Hyers-Ulam stability for a quite
wide class of functional equations (see [15]). J. Brzdek et al. [10] proved
the fixed point theorem for a nonlinear operator in metric spaces and used
this result to study the Hyers-Ulam stability of some functional equations
in non-Archimedean metric spaces. In this work, they also obtained the
fixed point result in arbitrary metric spaces as follows:

By using this theorem, Brzdek [13] improved, extended and comple-
mented several earlier classical stability results concerning the additive
Cauchy equation (in particular Theorem 1.9). During the past few years
many mathematicians have investigated various generalizations, extensions
and applications of the Hyers-Ulam stability of a number of functional equa-
tions (see, for instance, [1, 2, 3, 5, 6, 15, 16, 12] and references therein).

Now, we present the fixed point theorem concerning 2-Banach spaces
given in [11]. First, we need the following hypotheses:

(H1) E is a nonempty set, (Y, I, ||) is a 2-Banach space, Yp is a subset
of Y containing two linearly independent vectors, j € N, f; : E — FE,
gi:Yo—Yp,and L; : ExYy - Ry fori=1,...,5;

(H2) 7 : Y¥ — YF is an operator satisfying the inequality
J

|Tet@)-Tute).o]) < 3 Lo |6(£@) (@) 0w € YE 2 € By e Vi
i=1

(1.4)
(H3) A: REXYO — REXYO is an operator defined by

J
(LONS(z,y) := > Li(w, 9)5(fi(2), 0i(y) ), 0 € RP, we By € Yo
=1

Theorem 1.10. [11] Let hypotheses (H1)-(H3) hold and functions € : E x
Yo — Ry and ¢ : E — Y fulfill the following two conditions:

(1.6) 1o - o)y <o) seByes
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(1.7) e¥(x,y) = i (A”s) (x,y) <oo z€Eye.

n=0

Then, there exists a unique fixed point v of 7 for which

(1.8) |e@) = v(@),y| <e*@y) veByev.
Moreover,
(1.9) P(x) = lim (T"p)(z) z € E.

n—oo

2. Main results

In this section, we prove some stability and hyperstability results for the
Cauchy-Jensen equation (1.1) in 2-Banach spaces by using Theorem 1.10.
In what follows (Y, ||-,||) is a real 2-Banach space.

Theorem 2.1. Let hy, ho, hs : Fy X Yo — R4 be three functions such that
U:={neNay: = M(1+n)A(l+n)A3(l+n)+ Ai(n)r2(n)A3(n) < 1} # ¢
(2.1)

where

(2.2) Xi(n) :=1inf {t € Ry:hij(nz,w) <t hi(z,w), x € Ey,w € Yo}

for all n € N, where i = 1,2,3. Assume that f : E — Y satisfies the
inequality

_l’_ —
17 (2] 1 (5 ) - 24) - flo) 0] < o w)ha(y, wha(e. ),
(2.3)
for all z,vy, 2, € Eg,w € Yy such that %zi +2#0and 52 + 2 #0. Then
there exists a unique Cauchy-Jensen function F': F — Y such that
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(2.4) Hf(a:) — F(:U),wH < Nohi(z, w)ha(z,w)hs(x, w)

for all x € Ey,w € Yy, where

— in Al(n))\g(n)
Ao := lnf { 1= A (1 +n)A2(1 +n)As(1 + 1) — AL (n)Az(n)As(n) } ‘

Proof. Replacing y and = with mz and z with x, where z € Ey and
m € N, in inequality (2.3) we get

(2.5) Hf((l +m):1c) — f(mzx) — f(x),wH < hi(mz, w)hg(mz, w)hs(z, w)

for all z € Ey, w € Yy. For each m € N, we define the operator 7, : Y0 —
Y Fo by

(2.6) Tné(z) = f((l + m):c) —&(ma), £cYP xc Ey.
Further put
(2.7)  em(z,w) := hi(mz,w)ha(mz, w)hs(z,w), =€ Ey,w € Yy,
and observe that
em(z,w) = hi(mz, w)ha(mz, w)hz(z,w) < A\ (m)Ar2(m)hi(z, w)ha(z, w)hs(z, w),

(2.8)
for all x € Fyp,w € Yy, m € N. Then the inequality (2.5) takes the form

(2.9) Hf(a:) — Tmf(a:),wH <eéem(z,w), =€ Ey,w € Y.

Furthermore, for every z € Eg,w € Yy, &, 1u € Y0, we obtain
|Tat@) ~ Tunto).w]| = (14 m)z) - &Gma) = u((1 4+ m)o) + a(me),u

< €= m (s miz).u] + € - mma). )|

So, (H2) is valid for 7p,.

This brings us to define the operator A, : REOXYO — REOXYO by

Apd(z,w) == 5((1 + m)x,w) + d(mz,w), J€ REOXYO,x € Ep,w € Yp.
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(2.10)

For each m € N, the above operator has the form described in (H3) with
filz) = (1 +m)zx, fo(z) = mz, g1(w) = go(w) = w and Ly (z) = La(x) =1
for all x € Ey. By induction, we will show that for each z € Ey,w € Y,
n € Ng, and m € U we have

(2.11) (Al em)(z,w) < Ai(m)A2(m)ag,hi(x, w)ha(x,w)hs(z, w)

where

= A1(1+m)Aa(1 +m)A3(1 + m) + A (m)Az(m)Az(m).

From (2.7) and (2.8), we obtain that the inequality (2.11) holds for
n = 0. Next, we will assume that (2.11) holds for n = k, where & € N.
Then we have
(AHen) (@, w) = A (Akem)(z,w))
= (k) (1 4+ m)z,w) + (Akem) (ma, w)
< A1(m)da(m)ak hy (1 4+ m)z, w)ha((1 +m)x, w)hs((1 +m)z, w)
+A1(m)Ae(m)agy b (ma, w)he(ma, w)hs (ma, w)

< )\1 (m)AQ(m)afnJrlhl(xa w)hQ(xv w)h?}(x? 'U})

for all x € Ep,w € Yy, m € U. This shows that (2.11) holds for n = k + 1.
Now we can conclude that the inequality (2.11) holds for all n € Ny. Hence,

we obtain

eml(@,w) =300 (Ahem)(z, w)
<Y g Ar(m)Ae(m)ay by (z, w)he(z, w)hz(z, w)
= Mhl(x,w)hg(x,w hs(z,w) < 0o

1—am

for all x € Ey,w € Yy, m € U. Therefore, according to Theorem 1.10 with
@ = f, we get that the limit
exists for each x € Fy and m € U, and

1(m)Ag2(m)hy(z, w)ha(z, w)hs(z, w)

1—amy,

| @) =Funta), ] < 2
(2.12)

, v € FEg,weYy, mel.



82 Khaled Yahya Naif Sayar and Amal Bergam

To prove that F,, satisfies the functional equation (1.1), just prove the
following inequality

for every z, y, z € Ep such that xTer—i—z # 0and 5442 # 0, w € Yo, n € Ny,
and m € U. Since the case n = 0 is just (2.3), take £ € N and assume
that (2.13) holds for n = k and every z,y,z € Ep such that %H +2z#0
and ¥ 4 2 # 0, w € Yo, m € U. Then, for each x,y,z € Ep, w € Yp and
m €U, we get

[(The 1) (554 2) + (T ) (232 + 2) - ATE D)) — (T Pl

= | (e m) (2 4 2)) = (ThDF (m (252 + 2))

HTENS (1 m) (552 +2)) = (TEAf (m (52 +2))

~ATENF (L +m)z) + ATED) T m2) — (TENF (1 +m)o) + (ThF) f(ma). |
< H(Tn’if)f (1 +m) (5 +2)) + (ThNf (1 +m) (5L +2))
( ) )f

[@ins(m(252 +2)) + (@hnf (m(27 + 2) )~ ATED Sm2) — (TE0)f )
< ahh ((1 +m)z, w) hz((l +m)

ok hy (mx, w ) ha (my, w) hs (mz, w)

< af by (z, w)ha (y, w)hs(z, w)

Thus, by induction, we have shown that (2.13) holds for every x,y, z €

Ey such that Z + 2 # 0 and 552 + 2 # 0, w € Yy, n € Np, and m € Y.
Letting n — oo in (2.13), we obtain the equality

(2.14)  Fp, (x—;y + z) +F, (% + z) = F(z) + 2F(2),
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for all z,y,2 € By such that 22 + 2 #£ 0 and 5% + 2 # 0,m € U,. This
implies that F}, : Fy — Y, defined in this way, is a solution of the equation

(2.15) F(z) = F((1+m)z) - F(ma), =€ Ep,mel.

Next, we will prove that each Cauchy-Jensen function F' : £ — Y
satisfying the inequality

(2.16) Hf(x) — F(:E),U)H < L hy(z,w)he(x,w)hs(z,w), =€ Ey,w € Yy

with some L > 0, is equal to Fy, for each m € U. To this end, we fix
mo € U and F : E — Y satisfying (2.16). From (2.12), for each = € Ey, we
get

|F(@) = Frg(@),w]| < [F@) = f@),w| + | £2) = Fng (@), w]
< L hy(z,w)he(z, w)hs(z,w) + g5, (2, w)
(2.17) < Lo hi(z, w)ha(z, w)hs(z, w) i Mg

n=0

where

Lo == (1 — apmy) L + A1(mo)A2(mo) > 0 and we exclude the case that
hi(z,w) = 0, ha(z,w) = 0 or hg(x,w) = 0 which is trivial. Observe that
F and F,,, are solutions to equation (2.15) for all m € U. Next, we show
that, for each j € Ny, we have

(e o]

HF(J:)—FmO(:U),wH < Lo hi(x,w)ha(z,w)hg(x,w) Z Qs T € Eo,w € Y.
n=j
(2.18)
The case j = 0 is exactly (2.17). We fix k£ € N and assume that (2.18)

holds for j = k. Then, in view of (2.17), for each x € Ey, w € Yp, we get
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HF(x) —Fmo(x),wH HF( 1+ myp) ) F(mpx)
—Fmo( 1+ myp) )—i— mo (MoT) wH
<||P (4 mo)z) = Funo (1 +mo)z),
+HF mox) — Fmy (mox), wH
< Lo hy ((1 +mo)z, w) ha ((1 +mo)z, w)h3((1 +mo)z, w) D onek Omg
+Lg hy (mox, w) ho (mgx, w) hs (mgw, w) Dk Qo
=Ly (h1 ((1 + mo)x,w) hg((l + myp)z, w) h3((1 +mp)z, w)

+hy (mox, w) ho (mox, w) hs (mox, w)) >k Qe
< Lo amphi(z, w)he(x, w)hs(z, w) 352, oy
= Lo h1(x, w)ha(x, w)hs(z,w) >0k 1 g, -

This shows that (2.18) holds for j = k4 1. Now we can conclude that
the inequality (2.18) holds for all j € Ng. Now, letting j — oo in (2.18),
we get

(2.19) F = Fp,.

Thus, we have also proved that F,, = F,, for each m € U, which (in
view of (2.12)) yields

A1(m)Aa(m)hi(x, w)ha(z, w)hs(x, w)

— <

| £ (@)= Fuo (@), w| < .
(2.20)

This implies (2.4) with F' = F,,, and (2.19) confirms the uniqueness of

F. O

, T € Eg,weYy,meU.

The following theorem concerns the n-hyperstability of (1.1) in 2-Banach
spaces. Namely, We consider functions f : E — Y fulfilling (1.1) approxi-
mately, i.e., satisfying the inequality

Hf (52 2) + 1 (52 2) - 2£) - fladw| < oy 2w,
(2.21

forallxy,zEEosuchthatx+y+z750and Y42 # 0,w € Y,
with n : Eg X Eg X Eg x Yp — Ry is a given mapplng Then we find a
unique Cauchy-Jensen function F': F — Y which is close to f. Then, under
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some additional assumptions on 7, we prove that the conditional functional
equation (1.1) is n-hyperstable in the class of functions f : E — Y, i.e., each
f:+ E — Y satisfying inequality (2.21), with such 7, must fulfil equation
(1.1).

Theorem 2.2. Let hy, ho, hg and U be as in Theorem 2.1. Assume that

Jim A1(n)Aa(n) =0,
{ lim A1(n)Aa2(n)Az(n) = 0.

n—oo

(2.22)
Then every f : E — Y satistying (2.3) is a solution of (1.1).

Proof.  Suppose that f: F — Y satisfies (2.3). Then, by Theorem 2.1,
there exists a mapping F : E — Y satisfies (1.1)
and

(2.23) | f(z) — F(z),w|| < XMohi(x,w)ha(z, w)hs(z, w)

for all x € Ey,w € Yy, where

. A1(n)A2(n)
‘“’%${1_Mu+mha+nnxrmw—anﬂm&mﬁ”

Since, in view of (2.22), A\g = 0. This means that f(z) = F(x) for all
x € Ey, whence

f<$;y+z)+f(£§£+z):f@0+2ﬂ@,

for all z,y, 2z € Eg such that 3% + z # 0 and %5 + z # 0, which implies
that f satisfies the functional equation (1.1) on E. O

Corollary 2.3. Let § > 0, s > 0, p,q,r € R such that p+q+r < 0.
Suppose that f : E — Y such that f(0) = 0 satisfy the inequality

7 (55w =) 1 (5 =) = 2£2) = £ ] < Blal? Nl " ol
(2.24)

for all z,y, 2 € Eg such that £ + 2z # 0 and %52 + 2 # 0, w € Yy. Then f

is Cauchy-Jensen on Ej.
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Proof. The proof follows from Theorem 2.1 by defining

hi,ha, hs : EgxYy — Ry by hi(x,w) = 01||z|]P||w||**, ha(y,w) = O2|y|?|w]|®2,
hs(z,w) = Os)]z||"||w]|*®* and hi(0,w) = he(0,w) = h3(0,w) = 0 with
01,052,035 € Ry, s1,s9,s3 € Ry and p,q,r € R such that 610.05 = 0,
s1+s3+s3=s andp+qg—+71<0.

For each n € N, we have
A1(n) =inf{t € Ry:hi(nz,w) <t hi(z,w), =€ Ey,w € Yo}
=inf {t € Ry:01||nz|P||w|]** <t 01]z|P|w|**, =€ Eo,w € Yy}
=nP.

Also, we have Aa(n) = n? and A\3(n) = n" for all n € N. Clearly, we
can find ng € N such that

AL (14+n) A2 (14n) A3 (14n)+A1 (n) A2 (n) A3 (n) = (14n)PTIHT 4Pt < 1 5 > ng.
(2.25)

According to Theorem 2.1, there exists a unique Cauchy-Jensen function
F: E —Y such that

(2.26) Hf(x) — F(x),wH < OXohy (2, w)ha(x, w)hs(x, w)

for all x € Ey,w € Yy, where

i A1(n)Aa(n)
Ao := lnf { 1= A (1 +n)A2(1 +n)As(1 +n) — A (n)Az2(n)As(n) } ‘

On the other hand, Since p + g + r < 0, It is sufficient to consider that
p+q < 0. Then

lim A1(n)Aa(n) = lim, e n?t7 =0,
(2.27) noeo . gt
nlLrgO A1(n)A2(n)Az(n) = limy, 0o P97 = 0.
Thus by Theorem 2.2, we get the desired results. O
The next corollary prove the hyperstability results for the inhomoge-

neous Cauchy-Jensen functional equation.

Corollary 2.4. Let 0,p,q,7,s € R such that 6 > 0 and p+ g+ r < 0.
Assume that G : B3 — Y and f : E — Y such that f(0) = 0 and satisfy
the inequality
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x4y x—y
|7 (5524 2) 47 (S50 4 2) — 24) = 1(@) — Glowys 2w < BlalP Iyl a1 ol
(2.28)
for all x,y,z€ Ey such that =¥ + z # 0 and 5% + 2 # 0,w € Yp. If the
functional equation

(2.29) f(“"’“;y )+f<—+z):2f(z)+f(x)+G(x,y,z),

for all z,y,z € Ey such that =¥ + 2 # 0 and *5¥ + z # 0, has a solution
fo: E—Y, then f is a solution to (2.29).

Proof.  From (2.28) we get that the function K : E — Y defined by
K = f — fo satisfies (2.24). Consequently, Corollary 2.3 implies that K is
a solution to Cauchy-Jensen functional equation (1.1). Therefore,
F(EE+2) +F (52 +2) —2f(2) - f(2) - <:cy7)—K(%+z)
—i—fo(%ﬂ’%—z)—i-f(( y+z)+fo<7y )
—2K(z) = 2fo(2) — K(z) — fo(z) — G(z,y, 2)
=0,

for all x,y, z € Fy such that %‘W + 2z # 0 and %52 + z # 0, which means f
is a solution to (2.29). O
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