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1. Introduction

We know that there exists strictly the relationship between matrices and
operators. The eigenvalues of matrices have been contained spectrum of
an operator. The spectral theory is one of the most useful tools in science.
There exist many its applications in mathematics and physics which con-
tain matrix theory, control theory, function theory, differential and integral
equations, complex analysis, and quantum physics. For example, atomic
energy levels are determined and therefore the frequency of a laser or the
spectral signature of a star are obtained by it in quantum mechanics. The
resolvent set of the band operators is important for solving in above expla-
nations problems. Band matrices emerge in many areas of mathematics and
its applications. Tridiagonal, or more general, banded matrices are used in
telecommunication system analysis, finite difference methods for solving
partial differential equations, linear recurrence systems with non-constant
coefficients, etc, (see [27]).

Quite recently, many authors have studied several types of spectra which
have important applications; for example, the approximate point spectrum,
defect spectrum, compression spectrum, essential spectrum, etc.

Let L : X — Y be a bounded linear operator where X and Y are
Banach spaces. Denote the range of L,

R(L)={yeY :y=Lz, z€ X}
and

B(X)={L: X — X : L is bounded linear operator} .

Assume that X be a Banach space and L € B(X). The adjoint operator
L* € B(X™) of L is defined by (L*f) (z) = f (Lz) for all f € X* and x € X
where X* is the dual space X.

Let X is a complex normed linear space and D(L) C X be domain of L
where L : D (L) — X is a linear operator. For L € B(X) we determine a
complex number A by the operator (Al — L) denoted by Ly which has the
same domain D(L), such that I is the identity operator. Recall that the
resolvent operator of Ly is L' := (AI — L™t

Let A€ C. If L;l exists, is bounded and, is defined on a set which is
dense in X then A is called a regular value of L.

The set p(L, X) of all regular values of L is called the resolvent set of
L. o(L,X):= C\p(L; X) is called the spectrum of L where C is complex
plane. Hence those values A € C for which L) is not invertible are contained
in the spectrum o (L, X).

The spectrum o (L, X) is union of three disjoint sets as follows: The
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point (discrete) spectrum o, (L, X) is the set such that L, does not exist.
Further A € 0,(L, X) is called the eigen value of L. We say that A € C
belongs to the continuous spectrum o.(L, X) of L if the resolvent operator
L;l is defined on a dense subspace of X and is unbounded. Furthermore,
we say that A € C belongs to the residual spectrum o, (L, X) of L if the
resolvent operator L;l exists, but its domain of definition (i.e. the range
R(M — L) of (\I — L) is not dense in X; in this case L)' may be bounded
or unbounded. Together with the point spectrum, these two subspectra
form a disjoint subdivision

(1.1) o(L,X)=0p(L,X)Uo.(L,X)Uo,(L,X)

of the spectrum of L.

Also the spectrum o (L, X) is partitioned into three sets which are not
necessarily disjoint as follows:

If there exists a sequence (z) in X shuch that ||zx| = 1 and || Lag| — 0
as k — oo then (zy) is called Weyl sequence for L.

We call the set

(1.2) 0gp(L,X) := {X € C: there exists aWeyl sequence for \I — L}

the approximate point spectrum of L. Moreover, the subspectrum

(1.3) o5(L, X) :={N€o(L,X): A\l — L is not surjective}

is called defect spectrum of L. There exists another subspectrum,

(1.4) oeo(L, X) = {Ne C: RN — L) # X}

which is often called compression spectrum in the literature. Clearly,
op(L, X) C o4p(L, X) and 0¢o(L, X) C o5(L, X).

The following Proposition is quitly useful for calculating the separation
of the spectrum of linear operator in Banach spaces.

Proposition 1 ([4], Proposition 1.3). The spectra and subspectra of
an operator L € B(X) and its adjoint L* € B(X™*) are related by the
following relations:

(a) o(L*, X*) =0(L,X), (b) oo(L*, X*) C 04p(L, X),

(0) 3up(L*, X*) = 05(L, X), (d) 05(L*, X*) = 04p(L, X),

(e) UP(L*7X*) = 0co(L, X), (f) 0co(L*, X*) 2 O-P(LaX)a

(g) o(L,X) = 04p(L, X) Uop(L*, X*) = 0p(L, X) U ogp(L*, X*).
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Goldberg’s Classification of Spectrum
If T € B(X), then there are three possibilities for R(T):

(I) R(T) =X, (II) R(T) = X, but R(T) # X, (Ill) R(T) # X
and three possibilities for 71

(1) T7! exists and continuous, (2) T! exists but discontinuous, (3)
T~ does not exist.

If these possibilities are combined in all possible ways, nine different
states are created. These are labelled by: I, Is, Is, 111, Iy, 113, I11;,
111y, I113. If an operator is in state 111, for example, then R(T') # X and
T~ exists but is discontinuous (see [16]).

If X\ is a complex number such that 7' = A — L € I or T = Al —
L € II, then A € p(L,X). All scalar values of A not in p(L,X) com-
prise the spectrum of L. The further classification of o(L,X) gives rise
to the fine spectrum of L. That is, o(L,X) can be divided into the
subsets lro(L,X) = 0, Is0(L,X), IIy0(L,X), II30(L,X), III1o(L,X),
I1Iyo(L,X), I1I30(L, X). For example, if T'= Al — L is in a given state,
I115 (say), then we write A\ € I1Iy0(L, X).

By the definitions given above, we can write following table

1 2 3
L;l exists L;l exists L;l

and is bounded | and is unbounded | does not exists

A€ op(L, X)

I |RM-L)=X A€ p(L, X) - A€ ogp(L, X)
A€o (L, X) A€ op(L, X)

II | RAM-L)=X A€ p(L, X) A€ ogp(L, X) X € ogp(L, X)
)xEO};(L,X) )\EO’5(L,X)

A€o (L, X) A€o (L, X) A€ op(L, X)

III | RAM —-L)#X | Xe€os(L,X) A€ ogp(L, X) A€ ogp(L, X)
)xEO’g(L,X) )\EO’5(L,X)

A€ 0eo(L, X) A€ 0eo(L, X) A€ 0eo(L, X)

Table 1

Let us denote the set of all sequences; the space of all null sequences;
space of all convergent sequences; space of all sequences such that
Yor | xk [P< 00 by w; co; ¢; £p; respectively.
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Lemma 1 ([16], Theorem II 3.11). The adjoint operator T* is onto if
and only if T has a bounded inverse.

Lemma 2 ([16], Theorem II 3.7). A linear operator T has a dense range
if and only if the adjoint operator T™ is one to one.

Lemma 3 ([17], Sections 28 Theorem 2). The sequence of the factors
in a convergent infinite product always tends 1.

2. Results and discussion

The matrices which are the infinite element or finite difference problems
are frequently banded in numerical analysis. We define the relationship
between the problem variables helping by these matrices. The bandedness
is confirmed with variables which are not conjugate in arbitrarily large dis-
tances. We can furthermore divide these matrices. For example, there
are banded matrices with every element in the band is nonzero. We gen-
erally encounter these matrices while we are separating one-dimensional
problems.

In addition, there are also band matrices in higher dimensional prob-
lems. Herein the bands are thiner. For example, the matrix which its
bandwidth is the square root of the matrix dimension, correspond to par-
tial differential equation defined in a square domain where the five diagonals
are not zero in the band. Unfortunately, if we apply Gaussian elimination
to this matrix, we obtain matrix which has the band with many non-zero
elements. Therefore the resolvent set of the band operators is important
for solving such problems (see [20]).

In the last years, several authors have investigated spectral divisions of
generalized difference matrices. For example, Akhmedov and El-Shabrawy,
[1, 2] have investigated the spectrum and fine spectrum of the generalized
lower triangle double-band matrix A, over the sequence spaces ¢y, ¢ and
¢y, where 1 < p < oo. The fine spectrum of the difference operator A over
the sequence spaces ¢y and ¢, has investigated by Altay and Basar [3] etc.

The above-mentioned articles are concerned with the decomposition
of the spectrum which defined by Goldberg. However, in [9] Durna and
Yildirim have investigated subdivision of the spectra for factorable matri-
ces on ¢g and in [5] Bagar, Durna and Yildirim have investigated subdivi-
sions of the spectra for generalized difference operator over certain sequence
spaces. In [22], the norm and spectrum of the Cesaro matrix considered as
a bounded operator on bug N £ were studied by Tripathy and Saikia. In
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[23], Tripathy and Paul examined the spectra of the operator D(r,0,0, s)
on sequence spaces c¢g and c. In [24], the spectra of the Rhaly operator
on the class of bounded statistically null bounded variation sequence space
was determined by Tripathy and Das. In [19], Paul and Tripathy investi-
gated the fine spectrum of the operator D(r,0,0,s) over a sequence space
bug. In [25], Tripathy and Das determined the spectrum and subdivisions of
the spectrum of the upper triangular matrix U(r, s) on the sequence space
¢s. In [6], the spectrum and fine spectrum of the lower triangular matrix
B (r,s,t) on the sequence space cs were studied by Das and Tripathy. In
[8], the fine spectrum of the lower triangular matrix B(r, s) over the Hahn
sequence space was investigated by Das. In [10], [11] Durna has studied
subdivision of the spectra for the generalized difference operators over the
sequence spaces ¢g, ¢ and £p, (1 < p < 00). In [18], Paul and Tripathy stud-
ied the spectrum of the operator D (r,0,0,s) over the sequence spaces £,
and bvp. In [7], Das has calculated the spectrum and fine spectrum of the
upper triangular matrix U(r1,72; $1, s2) over the sequence space cg. In [15],
El-Shabrawy and Abu-Janah determined spectra and the fine spectra of
generalized difference operator B (r,s) on the sequence spaces bug and h.
In [28], Yildirim and Durna examined the spectrum and some subdivisions
of the spectrum of discrete generalized Cesaro operators on £, (1 < p < 00).
In [26], the fine spectrum of the upper triangular matrix U(r,0,0, s) over
the squence spaces ¢y and ¢ was studied by Tripathy and Das. In [12],
Durna et al. studied partition of the spectra for the generalized difference
operator B(r,s) on the sequence space cs, in [13], Durna studied subdivi-
sion of spectra for some lower triangular doule-band matrices as operators
on ¢g.

2.1. The fine spectrum of the operator A, on c and ¢,, 1 <p < o0

In [21] Srivastava and Kumar have defined the generalized difference oper-
ator A, as follows:

Let the sequence (vg) is assumed to be either constant or strictly de-
creasing sequence of positive real numbers satisfying

(2.1) lim vy =L >0

k—o00

and

(2.2) sup v < 2L.
k
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Then the generalized difference operator
Ay is Ayz = Ay (25) = (0nZp — Vp—1Zp—1)peg With 23 =v_1 = 0.
The A,’s matrix representation is

Vo 0 0
—vg v O
(2.3) A, = 0 —u; v

If vy, = L # 0 for all £ € N is a constant sequence, then the operator
A, is the operator B (r,s) with r = L, s = —L and the results for the
subdivisions of the spectra for generalized difference operator A, over cg,
¢, ¢, and bv, have been studied in [5].

2.1.1. Partition of the spectrum of A, on c

The fine spectrum of the operator A, has been investigated by Akhmedov
and El-Shabrawy [1] and [2] on the sequence space c. In this study, let us
assume that vy # 2L. Herein we mention the main results.

Theorem 1 ([1], Theorem 2.2). o (A,,¢) ={Ae C:|A\—L| < L}.
Theorem 2 ([1], Theorem 2.3). o, (A,,c) = 0.

The following lemma is useful for finding the adjoint of a linear trans-
formation on the sequence space c.

Lemma 4. [29, p.267]If T : ¢ — c is a linear transformation and T* : {1 —
b1, T*g=goT, g€ c" =¥, thenT and T have matrix representations,
also T* : {1 — ¢ is given by

—— :<x(limA) wn)f;o)

(ar)po A
x(imA) 99 ¥ Vs
ag app aio a0
= ax ao1 Q11 a2 ;
a2 ap2 a2 a2
where -
x (limA) =limAe — Y lim Aey, = limy, Y apg — > limy, ang
k=0 k k
I :X(PnoT):(PnoT)e—zk:ank,

@k = Po (T (ex)) = (T (ex)),, -
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From Lemma 4 the adjoint of A, : ¢ — c¢ is the matrix

« [0 0
A=lo at
and A} € B (41).

Theorem 3 ([2], Theorem 2.7). o, (A},c*) = {A e C:|A-L|<L}U
H u {0},

where

oo |k—2
H={A€C:A—L| =L, ¥ |]] 2% <o0p.
k=2 |i=0

Theorem 4 ([2], Theorem 2.9). o, (A,,¢c) = {AeC:|AN-L|<L} U
H U {0}.

Theorem 5 ([2], Theorem 2.11). 0. (A,,c) ={ € C:|A—L|=L}\ (HU{0}).

Lemma 5. Forp, r € N,

> (€ abn) = £ o (z %)
n=p \k=r k=r n=p
where (ay) and (byx) are nonnegative real numbers and p > 2r.

oo /n—r pt+l-r pt+2—r pt+3—r
Proof. > <Z Gkbnk> Z agbakt - agbur+ Do arbupt Y. apbprt
n= k=r k=r k=r k=r k=r

= (arbpr + ar+1bp r4+1 + arq2b 2t ap— rbp,pfr)

+ (arbpy1r + arabprir1 + ar+2bp+1 r42+ o+ apy1rbpr1prar)

+ (arbpt2r + @rp1bpior+1 + @ri2bproria + o+ apro—rbprapro—r) + -
= Qr (bpr + bp+1 rt bp+2 rt- ) + ar41 (bp,rJrl + bp+1,r+1 + bp+2,r+1 + - )
+ ary2 (bp,r+2 + bp+1 r+2 + bp+2 r+2 - ) + -

= Qr Z b, + Ar4-1 Z bn, 41 arp2 Z bn, 42

k=r n=p

Theorem 6. [1I10(A,,c) = HU{v;: k€ N}

Proof. Let us investigate whether the operator (A — A,)* = A\ — A%
is surjective or not. Does there exist z € ¢; for all y € ¢; such that
(M — A¥)x = y? Firstly, we assume that A = 0. In this case, there is no
x €ty for y =e9 = (1,0,0,...) € £; such that (—A})z = y. Therefore A%


rvidal
Cuadro de texto
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is not surjective. Hence from Lemma 1, we have 0 ¢ I11 0 (A,,c). Now,
we assume that A # 0. In this case, if (A — A¥)x =y for all y € ¢y, then
we obtain that

ATg = Yo
(A—wo)x1 +vor2 = w1
()\ — 2}1) ) + V13 = Y2
(A= Vn-1)Tn +Vn1Tns1 = Yn
Hence
1
o = Xyo
rT = I
Vo — A
Ty = 1+ —n
) )
’Ul—)\ 1 ’Uo—)\Ul—)\ 1’1)1—)\ 1
r3 = To+—Yy = ————T1+ — Y1+ —Y2
U1 U1 V0 U1 v V1 U1
Vg — A 1 Vo — AV — AUy — A vl — AU — A
Ty = T3+ —Yys = 1+ Y1
() V9 0 U1 (%) U1 V2
1 Vo — 1
— Yo+ —Ys3
v V2 V2
v3—>\ 1 Uo—)\vl—A'Ug—AUg—)\ 1)1—)\02—)\1)3—)\
o= N T T v vy
1’02—)\’1)3—)\ %’Ug—)\ 1
— Yo + — Y3+ —Ua
v U2 3 U3 V3
Thus
n—2 n—2 n—2 n—2
Vg — A Vg — A & v; — A 1
:l:n::mH +y1H—+Z Y H . + Yn—1, n = 4.
k=0 Uk k=1 Uk VRl Vi Un-2

(2.4)

o0
Now, we must show that x € ¢;. That is, is the series Y |z,| conver-
n=0

gent? We have

o0 [e.°]

2 |wnl = |wol + |z1| + |w2| + |2s| + Z4|33n!
n=

[ee) n—2v A n—2v _
< |wo| + [w1| + [w2| + |z3] + |1] 24 [T == kH T
n= = =1

[o¢]
+ 1y X2
n=4
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—2 n—2 v\ 00 1
+ 3T H—z, + X |5l
k=2 z':k
n—2
Let 3o = z Iy Sl T zz#lne
n=4 k=1 i=k
x 1 1
and > 4 = Y ’U—yn,l . Since for all n € N, — < —, the series
n—=4 n—2 rUn L
_ o] 1 < 1 oo < 1
Si= X [ahum] < 7 X el < 7l
—A L— )
is convergent. If |\ — L| < L, then lim Uk = ’ <1%# 1 and
k—o0 Vg L

from Lemma 3, the product [] ”ZU;)‘ is divergent. Hence for A\ € o, (A, ),
Z- 1

the series >°; and >, are convergent if and only if A € H U {v : k € N}.
Now, let us investigate the series Y 5 to be convergent. If A € {v;, : k € N},
then it is clear that the series 23 is convergent Let )\ € H. Then, we get

o0 1
o= 5 [ 2 <7 S [ ml|T=2].
n=4 i=k
Thus, if we take p =4, r = 2, ar = |yx| and b, = H —‘T in Lemma
1=k
5, we get
1 o co |n—2 v
DS D[P J.
k=2 n=4|i=
oo |n—2 A\ oo |n—2 N
Since A € H, 3} | [[ “=| is convergent. Setting M := 3 | [[ =/,
n=4li=k ¢ n=4li=k ¢

we obtain that

>3 < f Z k| < ||Z/||131

and ) 5 is convergent. That is, for A € o, (Ay, ¢), the operator (Al — A,)*
is surjective if and only if A € H U {v; : k € N}. Thus from Lemma 1,
Al — A, has bounded inverse.

Corollary 1. 11150 (Ay,c) = ({A € C: |A—L| < L}\ {v : k € N})U{0}.

Proof. It is clear from Theorem 4 and Theorem 6 since
110 (Ay,c) = 0r (Ay,c)\I1I1o (Ay, ).

Theorem 7. (a) gy (Ay,c) ={A € C:|A-L| <L}\(HU{v,: keN}),
(b) 05 (Ay,c) ={Ae C:|A\—L| <L},
(c) 0co (Ay,c) ={A€C:|A—L|< L} UHU{0}.
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Proof. (a) It is clear from Theorem 1 and Theorem 6 since

Oap (Ay,c) = o (Ay,c)\I1110 (Ay, c)from Table 1. (b) From Theorem 2,
I3 (Ay,c) = II30 (Ay, ¢) = I1130 (Ay, ¢) = O since op (A, ¢) = I30 (Ay, c)U
I130 (A, c)UI1I30 (Ay,c) from Table 1. Also, since from Table 1, o5 (Ay, ¢) =
o (Ay,c) \I30 (Ay, c), the proof is finished from Theorem 1. (c) It is clear
from Theorem 4 since from Table 1, 0., (Ay, ¢) = [0 (Ay, c)UIT 20 (A, c)U
11130 (Ay,c) = 0p (Ay,c) UIlIz0 (Ay,c).

Corollary 2. (a) oqp (A}, 01) ={Ae€C:|A-L| <L},
(b) o5 (A%, 61) = (A€ C:|A—L| < L}\ (H U {vg : k € N}).

Proof. It is clear from Theorem 7 and Proposition 1 (c¢) and (d).

2.1.2. Partition of the spectrum of A, on /,, 1 <p < o0

El-Shabrawy [14] and Akhmedov, El-Shabrawy [2] have examined the fine
spectrum of the operator A, on the sequence space £, (1 < p < 0o). Herein
we mention the main results.

Theorem 8 ([14], Theorem 2.2). o (A,,¢y)) ={ e C:|A—-L| < L}.
Theorem 9 ([14], Theorem 2.3). o, (Ay,4,) = 0.

Let T : ¢, — £, (1 < p < 00) be a bounded linear operator and A be its
matrix representation. We know that the adjoint operator T : £ — (7 is

a bounded linear operator and A is its matrix representation. We notice
that the dual space £, of £, is isomorphic to ¢, with pl+qg =1

v P
q
<.

Theorem 11 ([2], Theorem 2.21). o, (A,,¢,) ={ € C: |\ —L| < L}U
H;.

Theorem 10 ([2], Theorem 2.20). o, (A* é*) ={AeC:|]AN-L| <L}y
Hy, where

le{)\eC:\)\—L\:L, 3
k

k
=114

—1
A—;
z££ vi

Theorem 12 ([2], Theorem 2.22). 0. (A, 4,) ={A\€ C: |\ —L|=L}\H;.

Theorem 13. [11i0 (Ay,¢p) = Hi U {v; : k € N}.


rvidal
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Proof.  Let us investigate whether the operator (A — A,)" = A — A*
is surjective or not. Does there exist x € /¢, for all y € ¢, such that
(M — AY)z =y? If for all y € £y, (M — A})xz =y, then we get

()\ — ’U()) o+ vox1 = Yo
A=—wv)zr +viz2 = %
(A—wv2)za +v2m3 = Y2
(A - 'Un) Tn + UnTpt+l = Yn
Therefore
Vo — A 1
Ty = To + —U1
Vo Vo
U1—>\ 1 Uo—)\vl—A 1'1)1—)\ 1
T2 = r1+—y = Ty + — Yo+ —11
(] (] (o V1 Vo U1
UQ—)\ 1 Ug—)\’l)l—)\vz—)\ 1’01—/\1}2—)\
T3 = T2+ —Y2 = To + —
V2 V2 Vo U1 V2 Vo V1 ()]
1 Vo — A
— Y1+ —y2
(% () V2
Thus

(25)  ap=ap [ = Zy’“H” Ayl sy

k=0 =1 Vk—1 5, Ui Un—1

o
Now, we must show that z € ¢,. That is, is the series Y. |z,|? conver-

n=0
q) 1/q

gent? From Minkowski inequality, we have

X q la X n_lv )\ ykl V4 Yn—1

k=0 1R =k
1 1
< x Vp—A 1 /i X nl yr—1 |7 n=1 vi—\ 1 i
_\1‘0!”2H—k— X g::lm I1 =5~
00 Yno1 q 1/'1
+(E )
n=2
00 nflv Y q 00 n—1 Ykt q n—1 v\ q
Let 5 = 3 T %20 5 = 3 (S [t T 22 ). 2 =
n= — = e
X Nyt 4 o 1 1 .
> |&2=L1". Since for all n € N, — < —, the series
n—=g | Vn-1 Un L
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o0
£y = [t < 5o 8 ol < Lq Iol,
. - A L— )
is convergent. If |\ — L| < L, then lim =|——| <1#1 and
k—o0 VL L

from Lemma 3, the product [] ”Zv;/\ is divergent. Thus for A € o, (A,,¢),
'Z: 1

the series ) 5 is convergent if and only if A € H; U {v; : k € N}. Now, let
us investigate the series > g to be convergent. If A € {vy : k € N}, then it
is clear that the series ) ¢ is convergent. Let AeH 1 We get

S P = | ’q uz
26_1;2 1;1 Ukt zl;[k vi - Lfl Z Yk '
) n-1 A 1 .
Therefore, if we take p = 2, 7 = 1, ax = |yx|? and b, = | [] “-2| in
i=k
Lemma 5, then we have
5o <= 5 [l S |7 22
< — Yk o ||
6 L4 k=1 n=2li=k vi
00 q o |n=1 N q
Since A € Hy, Y. H J— is convergent. Setting M} := Y o] 8
n=2 n=2li=k "

we obtain ﬂ]l\%t . o .
1" & 1
< | — 9 < | ==
o< () £ it < ( 2 ul,)
and so ) 4 is convergent. That is, for A € o, (A,, ¢), the operator (A — A,)*

is surjective if and only if A € Hy U {v; : K € N}. Thus from Lemma 1,
A — A, has a bounded inverse.

Corollary 3. 110 (Ay,ly) ={A€ C:|A—L| < L}\{v: ke N}

Proof. It is clear from Theorem 11 and Theorem 13, since
1110 (Ay,c) = 0p (Ay,c) \I1110 (Ay, ).

Theorem 14. (a) o,y (Ay,4p) ={A€ C: | A—L| <L} \ (Hy U{vg: k€ N}),
(b) 05 (Ay,p) ={A e C:|A—L| <L},
(€) 0o (Ay, ) = {A € C:|A— L| < L} U H; U{0}.

Proof. (a) It is clear from Theorem 8 and Theorem 13. (b) From
Theorem 9, I30 (Ay, lp) = 1130 (Ay,€p) = 11130 (Ay,Lp) = () since from
Table 1, o, (Ay, lp) = I30 (Ay, 4p) U 1130 (Ay,¢) U 11130 (A, ¢,). Also,
the proof is finished from Theorem 8, since from Table 1, o5 (Ay,4,) =
0 (Ay, lp) \I30 (Ay, £p). (c)It is clear from Theorem 11, since from Table 1,
Oco (Dp,bp) = IT1ho (Ay, b)) VL1150 (Ay, £p)UITI30 (Ay, L) = 0r (Ay, £,)U
1156 (Ay, ).
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Corollary 4. (a) oqp (A}, 4y) ={A€C:|A-L| <L},
(b) o5 (A}, L) ={A€ C: A= L| < L}\ (Hi U{vg : k € N}).

Proof. It is clear from Theorem 14 and Proposition 1 (c¢) and (d).

2.2. The fine spectrum of the modified operator A, on c and /,,
l<p<oo

Akhmedov and El-Shabrawy [2] have modified the generalized difference
operator A, which is represented by the matrix

Vo 0 0
—0 V1 0
AU = 0 )

They have eliminated the condition: the sequence (vy) is strictly de-
creasing sequence of positive real numbers. Also they have put another
condition instead of condition (2.2). That is throughout this section, the
sequence (vg) is assumed to be a sequence of nonzero real numbers which
is either constant or satisfying the conditions

(2.6) lim v = L >0
and
(2.7) supvg < L.

k

Hereafter the sequence (vy) satisfies these properties adopted by Akhme-
dov and El-Shabrawy in [2].

2.2.1. Partition of the spectrum of the modified operator A, on
lpy, 1 <p< oo

Akhmedov and El-Shabrawy [2] have examined the spectrum, the point
spectrum, the residual spectrum and the continuous spectrum of the mod-
ified operator A, over the sequence space ¢, (1 <p < oo0). Herein we
mention the main results.

Theorem 15 ([2], Theorem 3.2). Let D ={\A € C: |\ — L| <|L|} and
E={v;:keN, |vy—L|>|L|}. Then o (A,,¢,) =DUE.

Theorem 16 ([2], Theorem 3.3). o, (A,,{,) = E.
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Theorem 17 ([2], Theorem 3.4). o (A;’j,é;;) ={AeC:|\-L|<|LI}U
{v : k € N}.

Theorem 18 ([2], Theorem 3.6). o, (A,,¢,) ={A € C:|\—L| <|L|}.
Theorem 19 ([2], Theorem 3.8). o.(A,,4,) ={ € C: |A—L|=|L|}.
Theorem 20. 1110 (Ay,¢y) ={vp: k€N, |v, — L| <|L|}.

Proof. Let us investigate whether the operator (A — A,)* = A\ — A%

is surjective or not. Does there exist x € ¢, for all y € ¢, such that
(M — A})xz =y? If for all y e Eq, (/\I A¥)x =y, then from (2.5),

n—1
xp = J] %2 Zykl H”’ +Lin>2
k=0

Vg—1 .
=k

&)
Now, we must show that z € ¢,. That is, is the series Y |xy|? conver-

n=0
gent?
Since
Yk—1 Vi—A . Yn—1
limy, o0 Tn, = X0 H JSzT + Z i H U=2 4 limy oo Un_:[’

k=0 k=1 i=k
1f for all k € N, \ # vy, then the limit of general term of infinite prod-

ack H Uk:_>\ Uk_)\ L— )\‘ If e O-T‘(A’Uaep)7
k=0

is lim
VL n—00

Vg Uk

from Theorem 18, we get

LT_)\‘ < 1. Thus from Lemma 3 , the infinite

o0 —
product [] Uk

k=0 Uk
X € 0, (Ay,lp) and for all k € N, X # vy, implies « ¢ £,. In this case, A\ -A
is not surjective and from Lemma 1, A\ — A, does not have bounded inverse.
Now, we assume that A € o, (A, ¢p) and for some kg € N, A = v;. In this

Yn—1 Let
Un—1

us take elements vy, such that |vy — L| < |L|, for k € N. If L > 0, then all
vy are positive in circle, if L < 0, then all vg are negative in circle. Hence
there are two cases for elements of the set {vy : k € N, |vx — L| < |L|}.

1. case: If L > 0, then there exists M > 0 such that M < vy < L. Hence

is divergent. This means that lim |z,|? # 0. Hence
n—oo

case, since the products are zero on the right hand of (2.5), z,, =

1 1 1
M<\Uk\<Landz<W<M. Thus we get
oo q g o 1 q
5 foalt < 1 55 funl” < 7 Il

n=2

2. case: If L < 0 then 2L < v < L. Thus |L] < |vg] < 2|L] and

1 1 1
— < Therefore we have
2|L| |Uk| L]
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o0
5 leal’ < 17 55 lonl” < 75 Il

n_

< Lq

That is, the Operator (M — A,)* is surjective if and only if
{ANewv:keN,|v,— L| <|L|}. Hence from Lemma 1, \I — A, has a
bounded inverse.

Corollary 5.
III0 (Ay, bp) ={A e C:|A—-L|<|L|}

\{vg: k€N, |, —L| <|L|}

Proof. It is clear from Theorem 18 and Theorem 20, since
1110 (Ay,c) = 0p (Ay,c) \I1I10 (Ay,c).

Theorem 21. I1l30 (A, ¢p) = E

Proof. Let we find ker (Al — A%). If (A — A})z = 0, then we have

()\ — UO) To+vor1 = 0
A=vi)x1+vizy = 0
A=vp) Ty +vpTpt1 = 0

Thus We have
Xp = 20 H _k_>‘ ;2> 1

IfXeFE, then A =vy and |v, — L| > ]L| and so
ker()\I—A*):{(xo,0,0,..) (xg, w=Ag00,0,. )

vo—A vVo—Avi—A
20, LA, LA A g (), 0)}

# {(0,0,0,...)}.

From here, if A € E, then AI — A} is not injective. Hence from Lemma
2,if A € E, then AI — A, does not have dense range. Therefore we obtain
that 11130 (A, ¢,) = E

Corollary 6. I30 (A, l,) = II30 (A, £p) = 0.
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Proof. It is clear from Theorem 21, since from Table 1, o, (Ay, £p) =
I30 (Ay, £p) U1 130 (A, £y)ULII30 (A, ¢p) = E and Iso (Ay, £p)N 130 (Ay, £,)N
1130 (A, £,) = 0.

Theorem 22. (a) o4y (Ay,4p) = (DUE)\{vy : k€N, |, — L| <|L|},
(b) 05 (Ay,¢p) =DUE,
(c) Oco (Av,lp) ={A € C: A= L| <|L|}UE.

Proof. (a) It is clear from Theorem 15 and Theorem 20. (b) It is
clear from Theorem 15 and Conclusion 6, since from Table 1, o5 (A, ¢,) =
o (Ay, lp) \I30 (Ay, £p). (c) Since from Table 1, o¢, (Ay, £p) = 11110 (A, £,)U
I11y0 (Ay, Ly) U 11130 (Ay,4py) = o7 (Ay, £p) U 11130 (Ay,¢,), the proof is
finished from Theorem 11 and Theorem 21.

Corollary 7. (a) oqp (A}, 4y) = DUE,
(b) 05 (A}, lq) = (DUE)\{v;: k€N, |v, — L| <|Ll|}.

Proof. It is clear from Theorem 22 and Proposition 1 (c¢) and (d).

2.2.2. Partition of the spectrum of the modified operator A, on ¢

Akhmedov and El-Shabrawy [2] have examined the spectrum, the point
spectrum, the residual spectrum and the continuous spectrum of the mod-
ified operator A, on the sequence space c. Herein we mention the main
results.

Theorem 23 ([2], Theorem 3.10). 0, (A},c¢*) ={ A€ C: |\ - L| <|L|}U
EuU{0}.

Theorem 24 ([2], Theorem 3.11). (a) 0 (Ay,c) = DUE,
(b) op (Ay, ) = E,

(c) o (Ay,c) ={A € C: |]A\—L| <|L|} U{0},

(d) oc (Av,c) = {A € C:[A— L[ = |L[}\{0}.

Theorem 25. [1I10 (Ay,lp) ={vi: k€N, |v, — L| < |Ll[}.

Proof. It can be shown as in Theorem 6 that 0 ¢ 1110 (A,,c). Now, we
assume that A\ # 0. Let us investigate whether the operator (A — A,)" =

A — A} is surjective or not. Does there exist x € ¢ for all y € ¢; such that
(M — ANz =y. If (\[ — A})x =y, then from (2.4) we get
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n—2 n—2

X, = T1 H Ve— A+y H Uk )\+2 Yk H viva+vn1,2yn*17n24'

Uk k=2 "1 2

o0
Now we show that x € ¢;. That is, is the series ). |x,| convergent?
n=0
Since

= S RT _
limy, o0 Tn = 21 H _]S—"‘y H L+Z 5;% H UJ;—Hlmn—wo g:;’
=1 i=k

the result is obtamed as n Theorern 20.
Corollary 8.
I (Ay,c)=({A e C: |A—L| < |L|} U{0})

\{or: k€N, Jop— L] < |L]}

Proof. It is clear from Theorem 24 and Theorem 25, since
11150 (Ay,c) = or (Ay,c) \I1I10 (Ay,c).

Theorem 26. 11130 (A,,¢,) = E

Proof. Let we find ker (Al — A¥). If (\] — A})z = 0, then we get

)\.’L‘O = 0

(A—wvo)x1 +vox2 = 0

()\ —01)1'2 +vizg = 0

(A - 'Un—l) Tn + Un—1Tnt+1 = 0

Hence We have
—2

Xn = 1 H _k— ;2> 2.
k=0
IfAek, then)\:vk and |vx, — L| > |L|. And so, we get

1 21,0,0,.. l,xl,m’—’\xl,0,0,...
{3 )+ (3 )

1 vo—A Vo—A V1=
7(Xa$1a OUO Ty, OUO 11 LE170 0,),}

ker (A — A¥) =

# {(0,0,0,...)}.

This means that if A € E, then \I — A} is not injective. Hence from
Lemma 2, if A\ € E, then Al — A, does not have dense range. Therefore
III30 (Ay, bp) = E

Corollary 9. I30 (Ay,¢) = 130 (Ay,c) = 0.
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Proof. It is clear from Theorem 26, since from Table 1 o, (Ay,c) =
Is0 (A, c)UlI30 (Ay,c)UlII30 (A, c) = E and I30 (A, c)NI130 (Ay,c)N
I1130 (Ay,c) = 0.

Theorem 27. (a) o4y (Ay,c) = (DU E)\{vg: k€N, |v, — L| <|L|},
(b) 05 (Ay,c) = DUE,
(c) 0co (Ay,c) ={A€C:|N=L|<|LI}U{0}UE.

Proof. (a) It is clear from Theorem 24 (a) and Theorem 25. (b)
It is clear from Theorem 24 (a) and Conclusion 9, since from Table 1,
05 (Ay,c) = 0 (Ay, ) \I30 (Ay, ). (c) It is clear from Theorem 24 (c) and
Theorem 26, since from Table 1, 0., (Ay, ¢) = [1110 (Ay, c)UI 150 (A,,c)U
I1130 (Ay,c) = 0, (Ay,c) UIII30 (Ay,c).

Corollary 10. (a) ogp (A, 01) =DUE,
(b) o5 (A%, 01) = (DUE)\{v : k € N, |v, — L| < |Ll|}.

Proof. It is clear from Theorem 27 and Proposition 1 (c¢) and (d).
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