

Z_{k}-Magic Labeling of Star of Graphs

P. Jeyanthi ${ }^{1}$ © orcid.org/0000-0003-4349-164X
K. Jeya Daisy ${ }^{2}$ © orcid.org/0000-0002-2159-7710
${ }^{1}$ Govindammal Aditanar College for Women, Dept. of Mathematics Tiruchendur, TN, India. - jeyajeyanthi@rediffmail.com
${ }^{2}$ Holy Cross College, PG and Research Dept. of Mathematics, Nagercoil, TN, India.
- vishnunarayanmishra@gmail.com

Received: November 2018 | Accepted: April 2019

Abstract

: For any non-trivial abelian group A under addition a graph G is said to be A-magic if there exists a labeling $f: E(G) \rightarrow A-\{0\}$ such that, the vertex labeling $f+$ defined as $f+(v)=P f(u v)$ taken over all edges uv incident at v is a constant. An A-magic graph G is said to be Zk-magic graph if the group A is $Z k$, the group of integers modulo k and these graphs are referred to as k-magic graphs. In this paper we prove that the graphs such as star of cycle, flower, double wheel, shell, cylinder, gear, generalised Jahangir, lotus inside a circle, wheel, closed helm graph are Zk-magic graphs.

Keywords: A-magic labeling; Flower; Double wheel; Shell; Cylinder; Gear; Generalised Jahangir; Lotus inside a circle; Wheel; Closed helm graph.

MSC (2010): 05C78.

Cite this article as (IEEE citation style):

P. Jeyanthi and K. Jeya Daisy, "Z Magic Labeling of Star of Graphs", Proyecciones (Antofagasta, On line), vol. 39, no. 1, pp. 31-50, Feb. 2020, doi: 10.22199/issn.0717-6279-2020-01-0003. [Accessed dd-mm-yyyy].

1. Introduction

Graph labeling is currently an emerging area in the research of graph theory. A graph labeling is an assignment of integers to vertices or edges or both subject to certain conditions. A detailed survey was done by Gallian in [1]. If the labels of edges are distinct positive integers and for each vertex v the sum of the labels of all edges incident with v is the same for every vertex v in the given graph then the labeling is called a magic labeling. Sedláček [10]introduced the concept of A-magic graphs. A graph with real-valued edge labeling such that distinct edges have distinct non-negative labels and the sum of the labels of the edges incident to a particular vertex is same for all vertices. Low and Lee [9] examined the A-magic property of the resulting graph obtained from the product of two A-magic graphs. Shiu, Lam and Sun [11] proved that the product and composition of A-magic graphs were also A-magic.

For any non-trivial Abelian group A under addition a graph G is said to be A-magic if there exists a labeling $f: E(G) \rightarrow A-\{0\}$ such that, the vertex labeling f^{+}defined as $f^{+}(v)=\sum f(u v)$ taken over all edges $u v$ incident at v is a constant. An A-magic graph G is said to be Z_{k}-magic graph if the group A is Z_{k}, the group of integers modulo k. These Z_{k}-magic graphs are referred to as k-magic graphs. Shiu and Low [12] determined all positive integers k for which fans and wheels have a Z_{k}-magic labeling with a magic constant 0 . Motivated by the concept of A-magic graph in [10] and the results in [9], [11] and [12] Jeyanthi and Jeya Daisy [2]-[8] proved that the open star of graphs, subdivision graphs, cycle of graphs and some standard graphs admit Z_{k}-magic labeling. We use the following definitions in the subsequent section.

Definition 1.1. A star of graph G is obtained by replacing each vertex of star $K_{1, n}$ by a graph G. It is denoted by $S(n . G)$.

Definition 1.2. A shell graph $S_{n}, n \geq 4$, is obtained by taking $n-3$ concurrent chords in a cycle C_{n}. The vertex at which all the chords are concurrent is called an apex.

Definition 1.3. A flower graph $F l_{n}, n \geq 3$, is obtained from a helm H_{n} by joining each pendent vertex to the central vertex of the helm.

Definition 1.4. A double wheel graph $D W_{n}, n \geq 3$, is obtained by joining the vertices of two cycles C_{n} to an extra vertex called the hub.

Definition 1.5. A Cartesian product of a cycle $C_{n}, n \geq 3$, and a path on two vertices is called a cylinder graph $C_{n} \square P_{2}$.

Definition 1.6. A generalized Petersen $\operatorname{graph} P(n, m), n \geq 3,1 \leq m<\frac{n}{2}$ is a 3 -regular graph with the vertex set $\left\{u_{i}, v_{i}: i=1,2, \ldots, n\right\}$ and the edge set $\left\{u_{i} v_{i}, u_{i} u_{i+1}, v_{i} v_{i+m}: i=1,2, \ldots, n\right\}$, where the indices are taken over modulo n.

Definition 1.7. A wheel graph $W_{n}, n \geq 3$, is obtained by joining the vertices of a cycle C_{n} to an extra vertex called the centre. The vertices of degree three are called rim vertices.

Definition 1.8. A generalised Jahangir $J_{k, s}$, is a graph on $k s+1$ vertices consisting of a cycle $C_{k s}$ and one additional vertex that is adjacent to k vertices of $C_{k s}$ at distance s to each other on $C_{k s}$.

Definition 1.9. A lotus inside a circle $L C_{n}, n \geq 3$, is a graph obtained from a wheel W_{n} by subdividing every edge forming the outer cycle and joining these new vertices to form a cycle.

Definition 1.10. A helm graph $H_{n}, n \geq 3$, is obtained by adjoining a pendant edge at each vertex of the wheel except the center.

Definition 1.11. A closed helm graph $C H_{n}, n \geq 3$, is obtained from a helm H_{n} by joining each pendent vertex to form a cycle.

2. Z_{k}-Magic Labeling of Star of Graphs

In this section we prove that the graphs such as star of cycle, flower, double wheel, shell, cylinder, gear, generalised Jahangir, lotus inside a circle, wheel, closed helm graph are Z_{k}-magic graphs.

Theorem 2.1. The star of cycle $S\left(n . C_{n}\right)$ is Z_{k}-magic, when n is odd and $n \geq 3$.

Proof. Let the vertex set and the edge set of $V\left(S\left(n . C_{n}\right)\right)$ be $V\left(S\left(n . C_{n}\right)\right)=$ $\left\{v_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i}^{j}: 1 \leq i, j \leq n\right\}$ and $E\left(S\left(n . C_{n}\right)\right)=\left\{v_{i} v_{i+1}, u_{i}^{j} u_{i+1}^{j}\right.$ $: 1 \leq i \leq n-1\} \cup\left\{v_{n} v_{1}, u_{n}^{j} u_{1}^{j}: 1 \leq j \leq n\right\} \cup\left\{v_{j} u_{1}^{j}: 1 \leq j \leq n\right\}$.
Let $a, b \in Z_{k}-\{0\}$ such that $a+b \not \equiv 0(\bmod k)$. Define the edge labeling $f: E\left(S\left(n . C_{n}\right)\right) \rightarrow Z_{k}-\{0\}$ as follows:
$f\left(v_{i} v_{i+1}\right)=a$ for $1 \leq j \leq n-1$,
$f\left(v_{n} v_{1}\right)=a, f\left(v_{j} u_{1}^{j}\right)=b$ for $1 \leq j \leq n$,
$f\left(u_{i}^{j} u_{i+1}^{j}\right)= \begin{cases}a, & \text { for } i \text { is odd, } 1 \leq j \leq n, \\ a+b, & \text { for } i \text { is even, } 1 \leq j \leq n .\end{cases}$
Then the induced vertex labeling $f^{+}: V\left(S\left(n . C_{n}\right)\right) \rightarrow Z_{k}$ is $f^{+}(v) \equiv 2 a+$ $b(\bmod k)$ for all $v \in V\left(S\left(n . C_{n}\right)\right)$. Hence f^{+}is constant and it is equal to $2 a+b(\bmod k)$. Since $S\left(n . C_{n}\right)$ admits Z_{k}-magic labeling, it is a Z_{k}-magic graph.

An example of Z_{5}-magic labeling of $S\left(5 . C_{5}\right)$ is shown in Figure 1.

Figure 1: Z_{5}-magic labeling of $S\left(5 . C_{5}\right)$
Theorem 2.2. The star of shell graph $S\left(n . S_{n}\right)$ is Z_{k}-magic, when n is odd and $n \neq 3$.

Proof. Let the vertex set and the edge set of $S\left(n . S_{n}\right)$ be $V\left(S\left(n . S_{n}\right)\right)=$ $\left\{v_{i}, u_{i}^{j}: 1 \leq i, j \leq n\right\}$ and $E\left(S\left(n . S_{n}\right)\right)=\left\{v_{1} v_{i+2}: 1 \leq i \leq n-3\right\} \cup$ $\left\{v_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{v_{n} v_{1}\right\} \cup\left\{v_{j} u_{1}^{j}: 1 \leq i, j \leq n\right\} \cup\left\{u_{1}^{j} u_{i+2}^{j}: 1 \leq i \leq\right.$ $n-3,1 \leq j \leq n\} \cup\left\{u_{i}^{j} u_{i+1}^{j}: 1 \leq i \leq n-1,1 \leq j \leq n\right\} \cup\left\{u_{n}^{j} u_{1}^{j}: 1 \leq j \leq n\right\}$. Let a be an integer and $k>(n-2) 2 a$.
Define the edge labeling $f: E\left(S\left(n . S_{n}\right)\right) \rightarrow Z_{k}-\{0\}$ as follows:
$f\left(v_{1} v_{i+2}\right)=f\left(u_{1}^{j} u_{i+2}^{j}\right)=2 a$ for $1 \leq i \leq n-3,1 \leq j \leq n$,
$f\left(v_{1} u_{1}^{1}\right)=k-(n-2) 2 a, f\left(u_{1}^{1} u_{2}^{1}\right)=f\left(u_{1}^{1} u_{n}^{1}\right)=a$,
$f\left(u_{i}^{1} u_{i+1}^{1}\right)=k-a$ for $2 \leq i \leq n-1$,
$f\left(v_{2} u_{1}^{2}\right)=f\left(v_{n} u_{1}^{n}\right)=k-2 a$,
$f\left(u_{1}^{2} u_{2}^{2}\right)=f\left(u_{1}^{2} u_{n}^{2}\right)=k-(n-4) a$,
$f\left(u_{i}^{2} u_{i+1}^{2}\right)= \begin{cases}(n-4) a, & \text { for } i \text { is even, } \\ k-(n-2) a, & \text { for } i \text { is odd, } i \neq 1, n .\end{cases}$
$f\left(u_{1}^{n} u_{2}^{n}\right)=f\left(u_{1}^{n} u_{n}^{n}\right)=k-(n-4) a$,
$f\left(u_{i}^{n} u_{i+1}^{n}\right)= \begin{cases}(n-4) a, & \text { for } i \text { is even, } \\ k-(n-2) a, & \text { for } i \text { is odd, } i \neq 1, n,\end{cases}$
$f\left(v_{j} u_{1}^{j}\right)=k-4 a$ for $3 \leq j \leq n-1$,
$f\left(u_{1}^{j} u_{2}^{j}\right)=f\left(u_{1}^{j} u_{n}^{j}\right)=k-(n-5) a$ for $3 \leq j \leq n-1$,
$f\left(u_{i}^{j} u_{i+1}^{j}\right)= \begin{cases}(n-5) a, & \text { for } i \text { is even, } 3 \leq j \leq n-1, \\ k-(n-3) a, & \text { for } i \text { is odd, } i \neq 1, n, 3 \leq j \leq n-1 .\end{cases}$
Then the induced vertex labeling $f^{+}: V\left(S\left(n . S_{n}\right)\right) \rightarrow Z_{k}$ is $f^{+}(v) \equiv 0(\bmod k)$ for all $v \in V\left(S\left(n . S_{n}\right)\right)$. Hence f^{+}is constant and it is equal to $0(\bmod k)$. Since $S\left(n . S_{n}\right)$ admits Z_{k}-magic labeling, it is a Z_{k}-magic graph. \square An example of Z_{13}-magic labeling of $S\left(7 . S_{7}\right)$ is shown in Figure 2.

Figure 2: Z_{13}-magic labeling of $S\left(7 . S_{7}\right)$

Theorem 2.3. The star of flower $S\left(n . F l_{n}\right)$ is Z_{k}-magic, when n is odd and $n \geq 3$.

Proof. Let the vertex set and the edge set of $S\left(n . F l_{n}\right)$ be $V\left(S\left(n . F l_{n}\right)\right)=$ $\left\{v, v_{i}, u_{i}: 1 \leq i \leq n\right\} \cup\left\{w_{i}, u_{i}^{j}, v_{i}^{j}: 1 \leq i, j \leq n\right\}$ and $E\left(S\left(n . F l_{n}\right)\right)=$ $\left\{v v_{i}, u_{i} v_{i}, u_{i} v: 1 \leq i \leq n\right\} \cup\left\{v_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{v_{n} v_{1}\right\} \cup\left\{w_{j} v_{i}^{j}: 1 \leq\right.$ $i, j \leq n\} \cup\left\{u_{i}^{j} v_{i}^{j}: 1 \leq i, j \leq n\right\} \cup\left\{u_{i}^{j} w_{j}: 1 \leq i, j \leq n\right\} \cup\left\{v_{i}^{j} v_{i+1}^{j}: 1 \leq\right.$ $i \leq n-1,1 \leq j \leq n\} \cup\left\{v_{n}^{j} v_{1}^{j}: 1 \leq j \leq n\right\} \cup\left\{v_{j} v_{1}^{j}: 1 \leq j \leq n\right\}$.
Let a be an integer and $k>4 a$.
Define the edge labeling $f: E\left(S\left(n . F l_{n}\right)\right) \rightarrow Z_{k}-\{0\}$ as follows:
$f\left(v v_{i}\right)=a \quad$ for $1 \leq i \leq n$,
$f\left(v_{i} u_{i}\right)=a \quad$ for $1 \leq i \leq n, f\left(v u_{i}\right)=k-a$ for $1 \leq i \leq n$,
$f\left(v_{i} v_{i+1}\right)=a \quad$ for $1 \leq i \leq n-1, f\left(v_{n} v_{1}\right)=a$,
$f\left(w_{j} v_{i}^{j}\right)=a \quad$ for $1 \leq i, j \leq n$,
$f\left(u_{i}^{j} v_{i}^{j}\right)=a \quad$ for $1 \leq i, j \leq n$,
$f\left(w_{j} u_{i}^{j}\right)=k-a$ for $1 \leq i, j \leq n$,
$f\left(v_{i}^{j} v_{i+1}^{j}\right)= \begin{cases}a, & \text { for } i \text { is odd, } 1 \leq j \leq n, \\ k-3 a, & \text { for } i \text { is even, } 1 \leq j \leq n,\end{cases}$
$f\left(v_{j} v_{1}^{j}\right)=k-4 a$ for $1 \leq j \leq n$.
Then the induced vertex labeling $f^{+}: V\left(S\left(n . F l_{n}\right)\right) \rightarrow Z_{k}$ is $f^{+}(v) \equiv 0(\bmod k)$ for all $v \in V\left(S\left(n . F l_{n}\right)\right)$. Hence f^{+}is constant and it is equal to $0(\bmod k)$. Since $S\left(n . F l_{n}\right)$ admits Z_{k}-magic labeling, it is a Z_{k}-magic graph.

An example of Z_{10}-magic labeling of $S\left(3 . F l_{3}\right)$ is shown in Figure 3.

Figure 3: Z_{10}-magic labeling of $S\left(3 . F l_{3}\right)$
Theorem 2.4. The star of double wheel graph $S\left(n . D W_{n}\right)$ is Z_{k}-magic, when n is odd and $n \geq 3$.

Proof. Let the vertex set and the edge set of $S\left(n . D W_{n}\right)$ be $V\left(S\left(n . D W_{n}\right)\right)=$ $\left\{v, v_{i}, u_{i}: 1 \leq i \leq n\right\} \cup\left\{w_{i}, u_{i}^{j}, v_{i}^{j}: 1 \leq i, j \leq n\right\}$ and $E\left(S\left(n . D W_{n}\right)\right)=$ $\left\{v v_{i}, v u_{i}: 1 \leq i \leq n\right\} \cup\left\{v_{i} v_{i+1}, u_{i} u_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{v_{n} v_{1}, u_{n} u_{1}\right\} \cup$ $\left\{w_{j} v_{i}^{j}, w_{j} u_{i}^{j}: 1 \leq i, j \leq n\right\} \cup\left\{v_{i}^{j} v_{i+1}^{j}, u_{i}^{j} u_{i+1}^{j}: 1 \leq i \leq n-1,1 \leq j \leq\right.$ $n\} \cup\left\{v_{n}^{j} v_{1}^{j}, u_{n}^{j} u_{1}^{j}: 1 \leq j \leq n\right\} \cup\left\{u_{j} u_{1}^{j}: 1 \leq j \leq n\right\}$.
Let a be an integer and $k>4 a$.
Define the edge labeling $f: E\left(S\left(n . D W_{n}\right)\right) \rightarrow Z_{k}-\{0\}$ as follows:
$f\left(v v_{i}\right)=f\left(w_{j} v_{i}^{j}\right)=2 a \quad$ for $1 \leq i, j \leq n$,
$f\left(v u_{i}\right)=f\left(w_{j} u_{i}^{j}\right)=k-2 a$ for $1 \leq i, j \leq n$,
$f\left(v_{i} v_{i+1}\right)=f\left(u_{i} u_{i+1}\right)=k-a \quad$ for $1 \leq i \leq n-1$,
$f\left(v_{n} v_{1}\right)=f\left(u_{n} u_{1}\right)=k-a$,
$f\left(u_{j} u_{1}^{j}\right)=4 a \quad$ for $1 \leq j \leq n$,
$f\left(v_{i}^{j} v_{i+1}^{j}\right)=k-a$ for $1 \leq i \leq n-1,1 \leq j \leq n$,
$f\left(v_{n}^{j} v_{1}^{j}\right)=k-a$ for $1 \leq j \leq n$,
$f\left(u_{i}^{j} u_{i+1}^{j}\right)= \begin{cases}k-a, & \text { for } i \text { is odd, } 1 \leq j \leq n, \\ 3 a, & \text { for } i \text { is even, } 1 \leq j \leq n .\end{cases}$
Then the induced vertex labeling $f^{+}: V\left(S\left(n . D W_{n}\right)\right) \rightarrow Z_{k}$ is $f^{+}(v) \equiv 0(\bmod k)$ for all $v \in V\left(S\left(n . D W_{n}\right)\right)$. Hence f^{+}is constant and it is equal to $0(\bmod k)$. Since $S\left(n . D W_{n}\right)$ admits Z_{k}-magic labeling, it is a Z_{k}-magic graph.

An example of Z_{5}-magic labeling of $S\left(3 . D W_{3}\right)$ is shown in Figure 4.

Figure 4: Z_{5}-magic labeling of $S\left(3 . D W_{3}\right)$
Theorem 2.5. The star of cylinder graph $C_{n} \square P_{2}$ is Z_{k}-magic, when n is odd and $n \geq 3$.

Proof. Let the vertex set and the edge set of $S\left(n .\left(C_{n} \square P_{2}\right)\right)$ be $V\left(S\left(n .\left(C_{n} \square P_{2}\right)\right)\right)=\left\{v_{i}, u_{i}: 1 \leq i \leq n\right\} \cup\left\{v_{i}^{j}, u_{i}^{j}: 1 \leq i, j \leq n\right\}$ and $E\left(S\left(n .\left(C_{n} \square P_{2}\right)\right)\right)=\left\{v_{i} v_{i+1}, u_{i} u_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{v_{n} v_{1}, u_{n} u_{1}\right\} \cup$ $\left\{v_{i} u_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{j} u_{1}^{j}: 1 \leq j \leq n\right\} \cup\left\{v_{i}^{j} v_{i+1}^{j}, u_{i}^{j} u_{i+1}^{j}: 1 \leq i \leq\right.$ $n-1,1 \leq j \leq n\} \cup\left\{v_{n}^{j} v_{1}^{j}, u_{n}^{j} u_{1}^{j}: 1 \leq j \leq n\right\} \cup\left\{v_{i}^{j} u_{i}^{j}: 1 \leq i, j \leq\right.$ $n\} \cup\left\{u_{j} u_{1}^{j}: 1 \leq j \leq n\right\}$.

Let a be an integer and $k>4 a$.
Define the edge labeling $f: E\left(S\left(n .\left(C_{n} \square P_{2}\right)\right)\right) \rightarrow Z_{k}-\{0\}$ as follows:
$f\left(v_{i} v_{i+1}\right)=f\left(v_{i}^{j} v_{i+1}^{j}\right)=a$ for $1 \leq i \leq n-1,1 \leq j \leq n$,
$f\left(u_{i} u_{i+1}\right)=k-a$ for $1 \leq i \leq n-1, f\left(u_{n} u_{1}\right)=k-a$,
$f\left(v_{i} u_{i}\right)=f\left(v_{i}^{j} u_{i}^{j}\right)=k-2 a$ for $1 \leq i \leq n, 1 \leq j \leq n$,
$f\left(u_{i}^{j} u_{i+1}^{j}\right)= \begin{cases}k-a, & \text { for } i \text { is odd, } 1 \leq j \leq n, \\ 3 a, & \text { for } i \text { is even, } 1 \leq j \leq n,\end{cases}$
$f\left(u_{j} u_{1}^{j}\right)=4 a$ for $1 \leq j \leq n$.
Then the induced vertex labeling $f^{+}: V\left(S\left(n .\left(C_{n} \square P_{2}\right)\right)\right) \rightarrow Z_{k}$ is $f^{+}(v) \equiv 0(\bmod k)$ for all $v \in V\left(S\left(n .\left(C_{n} \square P_{2}\right)\right)\right)$. Hence f^{+}is constant and it is equal to $0(\bmod k)$. Since $S\left(n .\left(C_{n} \square P_{2}\right)\right)$ admits Z_{k}-magic labeling, it is a Z_{k}-magic graph.

An example of Z_{9}-magic labeling of $S\left(5 .\left(C_{5} \square P_{2}\right)\right)$ is shown in Figure 5 .

Figure 5: Z_{9}-magic labeling of $S\left(5 . C_{5} \times P_{2}\right)$
Theorem 2.6. The star of generalised Jahangir graph $S\left(n . J_{n, s}\right)$ is $Z_{k^{-}}$ magic, when n is odd, $n \geq 3$ and $s \geq 2$.

Proof. Let the vertex set and the edge set of $S\left(n . J_{n, s}\right)$ be $V\left(S\left(n . J_{n, s}\right)\right)=$ $\left\{v, v_{i}: 1 \leq i \leq n\right\} \cup\left\{v_{i, j}: 1 \leq i \leq n, 1 \leq j \leq s-1\right\} \cup\left\{w_{l}: 1 \leq l \leq\right.$ $n\} \cup\left\{v_{i}^{l}: 1 \leq i, l \leq n\right\} \cup\left\{v_{i, j}^{l}: 1 \leq i, l \leq n, 1 \leq j \leq s-1\right\}$ and $E\left(S\left(n . J_{n, s}\right)\right)=\left\{v v_{i}: 1 \leq i \leq n\right\} \cup\left\{v_{j} v_{1, j}: 1 \leq j \leq n\right\} \cup\left\{v_{i, j} v_{i, j+1}: 1 \leq\right.$ $i \leq n, 1 \leq j \leq s-1\} \cup\left\{v_{i, s-1} v_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{v_{n, s-1} v_{1}\right\} \cup\left\{v_{i} v_{1}^{i}: 1 \leq\right.$ $i \leq n\} \cup\left\{w_{l} v_{i}^{l}, u_{n}^{j} u_{1}^{j}: 1 \leq i, l \leq n\right\} \cup\left\{v_{i}^{l} v_{1, j}^{l}: 1 \leq i, l \leq n, 1 \leq\right.$ $j \leq s-1\} \cup\left\{v_{i, j}^{l} v_{i+1, j}^{l}: 1 \leq i \leq n-1,1 \leq j \leq s-1,1 \leq l \leq\right.$ $n\} \cup\left\{v_{i, s-1}^{l} v_{i+1}: 1 \leq i \leq n-1,1 \leq l \leq n\right\} \cup\left\{v_{n, s-1}^{n} v_{1}^{l}: 1 \leq l \leq n\right\}$.

Let a be an integer and $k>(n-1) a$.
Define the edge labeling $f: E\left(S\left(n . J_{n, s}\right)\right) \rightarrow Z_{k}-\{0\}$ as follows:
$f\left(v v_{1}\right)=k-(n-1) a$,
$f\left(v v_{i}\right)=a$ for $2 \leq i \leq n$,
For $1 \leq j \leq n$,
$f\left(v_{j} v_{1, j}\right)= \begin{cases}k-a, & \text { for } j \text { is odd, } \\ k-2 a, & \text { for } j \text { is even, }\end{cases}$
For i is odd.
$f\left(v_{i, j} v_{i, j+1}\right)= \begin{cases}a, & \text { for } j \text { is odd, } \\ k-a, & \text { for } j \text { is even, }\end{cases}$
For i is even.
$f\left(v_{i, j} v_{i, j+1}\right)= \begin{cases}2 a, & \text { for } j \text { is odd, }, \\ k-2 a, & \text { for } j \text { is even, }\end{cases}$
$f\left(v_{1} v_{1}^{1}\right)=k-(n-3) a$,
$f\left(v_{i} v_{1}^{i}\right)=\frac{(n-1) a}{2}$ for $2 \leq i \leq n$,
$f\left(w_{l} v_{1}^{l}\right)=k-(n-1) a$ for $1 \leq l \leq n$,
$f\left(w_{l} v_{i}^{l}\right)=a$ for $2 \leq i \leq n, 1 \leq l \leq n$,
$f\left(v_{i}^{1} v_{i, 1}^{1}\right)= \begin{cases}(n-2) a, & \text { for } i \text { is odd }, \\ k-(n-2) a, & \text { for } i \text { is even. }\end{cases}$
For i is odd.
$f\left(v_{i, j}^{1} v_{i, j+1}^{1}\right)= \begin{cases}k-(n-2) a, & \text { for } j \text { is odd, } \\ (n-2) a, & \text { for } j \text { is even. }\end{cases}$
For i is even.
For i is even.
$f\left(v_{i, j}^{1} v_{i, j+1}^{1}\right)= \begin{cases}(n-1) a, & \text { for } j \text { is odd, } \\ k-(n-1) a, & \text { for } j \text { is even, }\end{cases}$

$$
f\left(v_{i}^{l} v_{i, 1}^{l}\right)= \begin{cases}\frac{(n-3) a}{2}, & \text { for } i \text { is odd, } 2 \leq l \leq n, \\ k-\frac{(n-1) a}{2}, & \text { for } i \text { is even, } 2 \leq l \leq n .\end{cases}
$$

For i is odd.
$f\left(v_{i, j}^{l} v_{i, j+1}^{l}\right)= \begin{cases}k-\frac{(n-3) a}{2}, & \text { for } j \text { is odd, } 2 \leq l \leq n, \\ \frac{(n-3) a}{2}, & \text { for } j \text { is even, } 2 \leq l \leq n .\end{cases}$
For i is even.
$f\left(v_{i, j}^{l} v_{i, j+1}^{l}\right)= \begin{cases}\frac{(n-1) a}{2}, & \text { for } j \text { is odd, } 2 \leq l \leq n, \\ k-\frac{(n-1) a}{2}, & \text { for } j \text { is even, } 2 \leq l \leq n .\end{cases}$
Then the induced vertex labeling $f^{+}: V\left(S\left(n . J_{n, s}\right)\right) \rightarrow Z_{k}$ is $f^{+}(v) \equiv 0(\bmod k)$ for all $v \in V\left(S\left(n . J_{n, s}\right)\right)$. Hence f^{+}is constant and it is equal to $0(\bmod k)$.
Since $S\left(n . J_{n, s}\right)$ admits Z_{k}-magic labeling, it is a Z_{k}-magic graph.
An example of Z_{10}-magic labeling of $S\left(5 . J_{5,2}\right)$ is shown in Figure 6 .

Figure 6: Z_{10}-magic labeling of $S\left(5 . J_{5,2}\right)$

Theorem 2.7. The star of wheel graph $S\left(n . W_{n}\right)$ is Z_{k}-magic, when n is odd and $n \geq 3$.

Proof. Let the vertex set and the edge set of $S\left(n . W_{n}\right)$ be $V\left(S\left(n . W_{n}\right)\right)=$ $\left\{v, u_{i}, v_{j}, u_{i}^{j}: 1 \leq i, j \leq n\right\}$ and $E\left(S\left(n . W_{n}\right)\right)=\left\{v u_{i}: 1 \leq i \leq n\right\} \cup$ $\left\{u_{i} u_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{n} u_{1}\right\} \cup\left\{w_{j} u_{1}^{j}: 1 \leq j \leq n\right\} \cup\left\{u_{i}^{j} u_{i+1}^{j}: 1 \leq\right.$ $i \leq n-1,1 \leq j \leq n\} \cup\left\{u_{n}^{j} u_{1}^{j}: 1 \leq j \leq n\right\} \cup\left\{u_{j} u_{1}^{j}: 1 \leq j \leq n\right\}$.

Let a be an integer and $k>(n-1) a$.

Define the edge labeling $f: E\left(S\left(n . W_{n}\right)\right) \rightarrow Z_{k}-\{0\}$ as follows:
$f\left(v u_{1}\right)=k-(n-1) a$,
$f\left(w_{j} u_{1}^{j}\right)=k-(n-1) a$ for $1 \leq j \leq n$,
$f\left(v u_{i}\right)=a$ for $2 \leq i \leq n$,
$f\left(w_{j} u_{i}^{j}\right)=a$ for $2 \leq i \leq n, 1 \leq j \leq n$,
$f\left(u_{i} u_{i+1}\right)= \begin{cases}\frac{(n+1) a}{2}, & \text { for } i \text { is odd }, \\ k-\frac{(n-1) a}{2}, & \text { for } i \text { is even },\end{cases}$
$f\left(u_{i}^{j} u_{i+1}^{j}\right)= \begin{cases}\frac{(n+1) a}{2}, & \text { for } i \text { is odd, } 1 \leq j \leq n, \\ k-\frac{(n+3) a}{2}, & \text { for } i \text { is even, } 1 \leq j \leq n,\end{cases}$
$f\left(u_{j} u_{1}^{j}\right)=k-2 a$.

Then the induced vertex labeling $f^{+}: V\left(S\left(n . W_{n}\right)\right) \rightarrow Z_{k}$ is $f^{+}(v) \equiv$ $0(\bmod k)$ for all $v \in V\left(S\left(n . W_{n}\right)\right)$. Hence f^{+}is constant and it is equal to $0(\bmod k)$. Since $S\left(n . W_{n}\right)$ admits Z_{k}-magic labeling, it is a Z_{k}-magic graph.

An example of Z_{8}-magic labeling of $S\left(7 . W_{7}\right)$ is shown in Figure 7 .

Figure 7: Z_{8}-magic labeling of $S\left(7 . W_{7}\right)$
Theorem 2.8. The star of generalised Peterson graph $S\left(n . P_{n, m}\right)$ is $Z_{k^{-}}$ magic, when n is odd, $n \geq 3$.

Proof. Let the vertex set and the edge set of $S\left(n . P_{n, m}\right)$ be $V\left(S\left(n . P_{n, m}\right)\right)=$ $\left\{v_{i}, u_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i}^{j}, v_{i}^{j}: 1 \leq i, j \leq n\right\}$ and $E\left(S\left(n . P_{n, m}\right)\right)=$ $\left\{v_{i} v_{i+m}, v_{i} u_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i} u_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{n} u_{1}\right\} \cup\left\{u_{j} u_{1}^{j}: 1 \leq\right.$ $j \leq n\} \cup\left\{v_{i}^{j} v_{i+m}^{j}: 1 \leq i, j \leq n\right\} \cup\left\{v_{i}^{j} u_{i}^{j}: 1 \leq i, j \leq n\right\} \cup\left\{u_{i}^{j} u_{i+1}^{j}: 1 \leq\right.$ $i \leq n-1,1 \leq j \leq n\} \cup\left\{u_{n}^{j} u_{1}^{j}: 1 \leq j \leq n\right\}$.
Let a be an integer and $k>4 a$.
Define the edge labeling $f: E\left(S\left(n . P_{n, m}\right)\right) \rightarrow Z_{k}-\{0\}$ as follows:
$f\left(v_{i} v_{i+m}\right)=a \quad$ for $1 \leq i \leq n$,
$f\left(v_{i}^{j} v_{i+m}^{j}\right)=a \quad$ for $1 \leq i, j \leq n$,
$f\left(v_{i} u_{i}\right)=k-2 a$ for $1 \leq i \leq n$,
$f\left(v_{i}^{j} u_{i}^{j}\right)=k-2 a$ for $1 \leq i, j \leq n$,
$f\left(u_{i} u_{i+1}\right)=k-a \quad$ for $1 \leq i \leq n-1$,
$f\left(u_{n} u_{1}\right)=k-a$,
$f\left(u_{i}^{j} u_{i+1}^{j}\right)= \begin{cases}k-a, & \text { for } i \text { is odd, } 1 \leq j \leq n, \\ 3 a, & \text { for } i \text { is even, } 1 \leq j \leq n,\end{cases}$
$f\left(u_{j} u_{1}^{j}\right)=4 a \quad$ for $1 \leq j \leq n$.
Then the induced vertex labeling $f^{+}: V\left(S\left(n . P_{n, m}\right)\right) \rightarrow Z_{k}$ is $f^{+}(v) \equiv 0(\bmod k)$ for all $v \in V\left(S\left(n . P_{n, m}\right)\right)$. Hence f^{+}is constant and it is equal to $0(\bmod k)$. Since $S\left(n . P_{n, m}\right)$ admits Z_{k}-magic labeling, it is a Z_{k}-magic graph.

An example of Z_{9}-magic labeling of $S\left(5 . P_{5,2}\right)$ is shown in Figure 8.

Figure 8: Z_{9}-magic labeling of $S(5 . P(5,2))$

Theorem 2.9. The star of lotus inside a circle $S\left(n . L C_{n}\right)$ is Z_{k}-magic, when n is odd and $n \geq 3$.

Proof. Let the vertex set and the edge set of $S\left(n . L C_{n}\right)$ be $V\left(S\left(n . L C_{n}\right)\right)=$ $\left\{u, v_{i}, u_{i}: 1 \leq i \leq n\right\} \cup\left\{w_{j}, u_{i}^{j}, v_{i}^{j}: 1 \leq i, j \leq n\right\}$ and $E\left(S\left(n . L C_{n}\right)\right)=$ $\left\{u v_{i}, v_{i} w_{i}: 1 \leq i \leq n\right\} \cup\left\{v_{i} u_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{v_{n} u_{1}\right\} \cup\left\{u_{i} u_{i+1}: 1 \leq\right.$ $i \leq n-1\} \cup\left\{u_{n} u_{1}\right\} \cup\left\{u_{j} v_{1}^{j}: 1 \leq j \leq n\right\} \cup\left\{w_{j} v_{i}^{j}: 1 \leq i, j \leq n\right\} \cup\left\{v_{i}^{j} u_{i}^{j}: 1 \leq\right.$ $i, j \leq n\} \cup\left\{v_{i}^{j} u_{i+1}^{j}: 1 \leq i \leq n-1,1 \leq j \leq n\right\} \cup\left\{v_{n}^{j} u_{1}^{j}: 1 \leq j \leq n\right\}$.
Let a be an integer and $k>(n-1) a$.
Define the edge labeling $f: E\left(S\left(n . L C_{n}\right)\right) \rightarrow Z_{k}-\{0\}$ as follows:
$f\left(u v_{1}\right)=f\left(w_{j} v_{1}^{j}\right)=k-(n-1) a$ for $1 \leq j \leq n$,
$f\left(u v_{i}\right)=f\left(w_{j} v_{i}^{j}\right)=a \quad$ for $2 \leq i \leq n, 1 \leq j \leq n$,
$f\left(v_{1} u_{1}\right)=f\left(v_{1}^{j} u_{1}^{j}\right)=(n-2) a \quad$ for $1 \leq j \leq n$,
$f\left(v_{i} u_{i}\right)=f\left(v_{i}^{j} u_{i}^{j}\right)=k-2 a \quad$ for $2 \leq i \leq n, 1 \leq j \leq n$,
$f\left(v_{i} u_{i+1}\right)=f\left(v_{i}^{j} u_{i+1}^{j}\right)=a$ for $1 \leq i \leq n-1,1 \leq j \leq n$,
$f\left(v_{n} u_{1}\right)=f\left(v_{n}^{j} u_{1}^{j}\right)=a$ for $1 \leq j \leq n$,
$f\left(u_{i} u_{i+1}\right)= \begin{cases}k-a, & \text { for } i \text { is odd, } \\ (n-1) a, & \text { for } i \text { is even, }\end{cases}$
$f\left(u_{i}^{j} u_{i+1}^{j}\right)= \begin{cases}k-a, & \text { for } i \text { is odd, } 1 \leq j \leq n, \\ 2 a, & \text { for } i \text { is even, } 1 \leq j \leq n .\end{cases}$
Then the induced vertex labeling $f^{+}: V\left(S\left(n \cdot L C_{n}\right)\right) \rightarrow Z_{k}$ is $f^{+}(v) \equiv 0(\bmod k)$
for all $v \in V\left(S\left(n . L C_{n}\right)\right)$. Hence f^{+}is constant and it is equal to $0(\bmod k)$.
Since $S\left(n . L C_{n}\right)$ admits Z_{k}-magic labeling, it is a Z_{k}-magic graph.

An example of Z_{6}-magic labeling of $S\left(5 . L C_{5}\right)$ is shown in Figure 9 .

Figure 9: Z_{6}-magic labeling of $S\left(5 . L C_{5}\right)$
Theorem 2.10. The star of closed helm $S\left(n . C H_{n}\right)$ is Z_{k}-magic, when n is odd and $n \geq 3$.

Proof. Let the vertex set and the edge set of $S\left(n . C H_{n}\right)$ be $V\left(S\left(n . C H_{n}\right)\right)=$ $\left\{v, v_{i}, u_{i}, w_{j}, u_{i}^{j}, v_{i}^{j}: 1 \leq i, j \leq n\right\}$ and $E\left(S\left(n . C H_{n}\right)\right)=\left\{u v_{i}, v_{i} u_{i}: 1 \leq i\right.$ $\leq n\} \cup\left\{v_{i} v_{i+1}, u_{i} u_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{v_{n} v_{1}, u_{n} u_{1}\right\} \cup\left\{u_{j} u_{1}^{j}: 1 \leq j \leq\right.$ $n\} \cup\left\{v_{i}^{j} v_{i+1}^{j}, u_{i}^{j} u_{i+1}^{j}: 1 \leq i \leq n-1,1 \leq j \leq n\right\} \cup\left\{v_{n}^{j} v_{1}^{j}, u_{n}^{j} u_{1}^{j}: 1 \leq j \leq\right.$ $n\} \cup\left\{w_{j} v_{i}^{j}, v_{i}^{j} u_{i}^{j}: 1 \leq i, j \leq n\right\}$.
Let a be an integer and $k>(n-1) a$.
Define the edge labeling $f: E\left(S\left(n . C H_{n}\right)\right) \rightarrow Z_{k}-\{0\}$ as follows:
$f\left(v v_{1}\right)=k-(n-1) a$,
$f\left(w_{j} v_{1}^{j}\right)=k-(n-1) a$ for $1 \leq j \leq n$,
$f\left(v v_{i}\right)=a \quad$ for $2 \leq i \leq n$,
$f\left(w_{j} v_{i}^{j}\right)=a \quad$ for $2 \leq i \leq n, 1 \leq j \leq n$,
$f\left(v_{1} u_{1}\right)=k-(n-1) a$,
$f\left(v_{1}^{j} u_{1}^{j}\right)=k-(n-1) a$ for $1 \leq j \leq n$,
$f\left(v_{i} u_{i}\right)=k-a \quad$ for $2 \leq i \leq n$,
$f\left(v_{i}^{j} u_{i}^{j}\right)=k-a \quad$ for $2 \leq i \leq n, 1 \leq j \leq n$,
$f\left(v_{i} v_{i+1}\right)= \begin{cases}(n-1) a, & \text { for } i \text { is odd }, \\ k-(n-1) a, & \text { for } i \text { is even },\end{cases}$
$f\left(v_{i}^{j} v_{i+1}^{j}\right)= \begin{cases}(n-1) a, & \text { for } i \text { is odd }, 1 \leq j \leq n, \\ k-(n-1) a, & \text { for } i \text { is even, } 1 \leq j \leq n,\end{cases}$
$f\left(u_{i} u_{i+1}\right)= \begin{cases}(n-1) a, & \text { for } i \text { is odd }, \\ a, & \text { for } i \text { is even },\end{cases}$
$f\left(u_{i}^{j} u_{i+1}^{j}\right)= \begin{cases}(n-1) a, & \text { for } i \text { is odd }, 1 \leq j \leq n, \\ k-(n-2) a, & \text { for } i \text { is even }, 1 \leq j \leq n,\end{cases}$
$f\left(u_{j} u_{1}^{j}\right)=k-(n-1) a$.

Then the induced vertex labeling $f^{+}: V\left(S\left(n . C H_{n}\right)\right) \rightarrow Z_{k}$ is $f^{+}(v) \equiv 0(\bmod k)$ for all $v \in V\left(S\left(n . C H_{n}\right)\right)$. Hence f^{+}is constant and it is equal to $0(\bmod k)$.
Since $S\left(n . C H_{n}\right)$ admits Z_{k}-magic labeling, it is a Z_{k}-magic graph.

An example of Z_{10}-magic labeling of $S\left(5 . \mathrm{CH}_{5}\right)$ is shown in Figure 10.

Figure 10: Z_{10}-magic labeling of $\mathrm{S}\left(5 . \mathrm{CH}_{5}\right)$

References

[1] J. A. Gallian, "A Dynamic Survey of Graph Labeling", 21th ed. The electronics journal of combinatorics, vol. \# DS6, p. 502, 2007. [On line]. Available: https://bit.ly/2tE6Eow
[2] P. Jeyanthi and K. J. Daisy, "Zk-Magic labeling of subdivision graphs", Discrete mathematics, algorithms and applications, vol. 8, no. 3, Art. ID 1650046, Jun. 2016, doi: 10.1142/ S1793830916500464.
[3] P. Jeyanthi and K. Jeya Daisy, "Zk-magic labeling of open star of graphs", Bulletin of the international mathematical virtual institute, vol. 7, no. 2, pp. 243-255, 2017. [On line]. Available: https://bit.ly/2ukchs4
[4] P. Jeyanthi and K. Jeya Daisy, "Certain classes of Zk-magic graphs", Journal of graph labeling, vol. 4, no. 1, pp. 38-47, 2018. [On line]. Available: https://bit.ly/2tFW6oL
[5] P. Jeyanthi and K. Jeya Daisy, "Zk-magic labeling of some families of graphs", Journal of algorithms and computation, vol. 50, no. 2, pp. 1-12, Dec. 2018. [On line]. Available: https://bit.ly/36bXWel
[6] P. Jeyanthi and K. Jeya Daisy, "Zk-magic labeling of cycle of graphs", International journal of mathematical combinatorics, vol. 1, pp. 88-102, Mar. 2019. [On line]. Available: https://bit.ly/2TLobpi
[7] P. Jeyanthi and K. Jeya Daisy, "Some results on Zk-magic labeling", Palestine journal of mathematics, vol. 8, no. 2, pp. 400-412, 2019. [On line]. Available: https://bit.ly/2Rd7bqv
[8] P. Jeyanthi, K. J. Daisy, and A. Semanicová-Fenovníková, "Zk-magic labeling of path union of graphs", Cubo (Temuco), vol. 21, no. 2, pp. 15-35, Aug. 2019, doi: 10.4067/s0719-06462019000200015.
[9] R. M. Low and S. M Lee, "On the products of group-magic graphs", Australasian journal of combinatorics, vol. 34, pp. 41-48, Feb. 2006. [On line]. Available: https://bit.ly/2Gamutw
[10] J. Sedláček, "On magic graphs", Mathematica slovaca, vol. 26, no. 4, pp. 329-335, 1976. [On line]. Available: https://bit.ly/38E4Yuf
[11] W. C. Shiu, P.C.B. Lam, and P. K. Sun, "Construction of group-magic graphs and some A-magic graphs with A of even order", Congressus numerantium, vol. 167, pp. 97-107, 2004. [On line]. Available: https://bit.ly/3at77K0
[12] W. C. Shiu and R. M. Low, "Zk-magic labeling of fans and wheels with magic-value zero", Australasian journal of combinatorics, vol. 45, pp. 309-316, Oct. 2009. [On line]. Available: https://bit.ly/2RERuY5

