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1. Introduction

Graph labeling is currently an emerging area in the research of graph theory.
A graph labeling is an assignment of integers to vertices or edges or both
subject to certain conditions. A detailed survey was done by Gallian in [1].
If the labels of edges are distinct positive integers and for each vertex v the
sum of the labels of all edges incident with v is the same for every vertex
v in the given graph then the labeling is called a magic labeling. Sedlacek
[10)introduced the concept of A-magic graphs. A graph with real-valued
edge labeling such that distinct edges have distinct non-negative labels and
the sum of the labels of the edges incident to a particular vertex is same
for all vertices. Low and Lee [9] examined the A-magic property of the
resulting graph obtained from the product of two A-magic graphs. Shiu,
Lam and Sun [11] proved that the product and composition of A-magic
graphs were also A-magic.

For any non-trivial Abelian group A under addition a graph G is said
to be A-magic if there exists a labeling f : E(G) — A — {0} such that,
the vertex labeling f* defined as fT(v) =Y f(uv) taken over all edges uv
incident at v is a constant. An A-magic graph G is said to be Zp-magic
graph if the group A is Zj, the group of integers modulo k. These Zp-magic
graphs are referred to as k-magic graphs. Shiu and Low [12] determined all
positive integers k for which fans and wheels have a Z-magic labeling with
a magic constant 0. Motivated by the concept of A-magic graph in [10]
and the results in [9], [11] and [12] Jeyanthi and Jeya Daisy [2]-[8] proved
that the open star of graphs, subdivision graphs, cycle of graphs and some
standard graphs admit Z;-magic labeling. We use the following definitions
in the subsequent section.

Definition 1.1. A star of graph G is obtained by replacing each vertex of
star K1, by a graph G. It is denoted by S(n.G).

Definition 1.2. A shell graph S,, n > 4, is obtained by taking n — 3
concurrent chords in a cycle C,,. The vertex at which all the chords are
concurrent is called an apex.

Definition 1.3. A flower graph Fl,, n > 3, is obtained from a helm H,
by joining each pendent vertex to the central vertex of the helm.
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Definition 1.4. A double wheel graph DW,, n > 3, is obtained by joining
the vertices of two cycles C,, to an extra vertex called the hub.

Definition 1.5. A Cartesian product of a cycle C,, n > 3, and a path on
two vertices is called a cylinder graph C,0P;.

Definition 1.6. A generalized Petersen graph P(n,m),n>3,1<m < g
is a 3-regular graph with the vertex set {u;,v; : i = 1,2,...,n} and the
edge set {u;vi, Wjtjt+1, ViVitm : @ = 1,2,...,n}, where the indices are taken
over modulo n.

Definition 1.7. A wheel graph W,, n > 3, is obtained by joining the
vertices of a cycle C, to an extra vertex called the centre. The vertices of
degree three are called rim vertices.

Definition 1.8. A generalised Jahangir Jy s, is a graph on ks+ 1 vertices
consisting of a cycle Cys and one additional vertex that is adjacent to k
vertices of Cs at distance s to each other on Clg.

Definition 1.9. A lotus inside a circle LC,,, n > 3, is a graph obtained
from a wheel W,, by subdividing every edge forming the outer cycle and
joining these new vertices to form a cycle.

Definition 1.10. A helm graph H,, n > 3, is obtained by adjoining a
pendant edge at each vertex of the wheel except the center.

Definition 1.11. A closed helm graph CH,, n > 3, is obtained from a
helm H, by joining each pendent vertex to form a cycle.
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2. Zp-Magic Labeling of Star of Graphs

In this section we prove that the graphs such as star of cycle, flower, double
wheel, shell, cylinder, gear, generalised Jahangir, lotus inside a circle, wheel,
closed helm graph are Zi-magic graphs.

Theorem 2.1. The star of cycle S(n.Cy,) is Zy-magic, when n is odd and
n > 3.

Proof.  Let the vertex set and the edge set of V(S (n.Cy,)) be V/(S(n.Cy))
{vi: 1<i<n}U {u{ 0 1<i,7 <n}and E(S(n.Cy)) = {Ui'l}i+1,u‘gu’,z+l
: lgign—l}u{vnvl,u%u{: lgjgn}u{vju{: 1<j<n}
Let a,b € Z — {0} such that a + b # 0(mod k). Define the edge labeling
f:E(S(n.Cy)) — Zi — {0} as follows:
fwvig) =afor1 <j<n-—1,
fopv1) = a,f(vju]) =bfor 1 < j <n,
P a, fori isodd, 1 <j<mn,
flujuisy) = a+b, fori iseven,1<j<n.

Then the induced vertex labeling f : V(S(n.Cy)) — Ziis fT(v) = 2a+
b(mod k) for all v € V(S(n.Cy,)). Hence fT is constant and it is equal to
2a + b(mod k). Since S(n.Cy,) admits Zi-magic labeling, it is a Zj-magic
graph. O
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An example of Zz-magic labeling of S(5.Cj5) is shown in Figure 1.

Figure 1: Z5-magic labeling of 5(5.C%)

Theorem 2.2. The star of shell graph S(n.Sy,) is Zx-magic, when n is odd
and n # 3.

Proof.  Let the vertex set and the edge set of S(n.Sy,) be V(S(n.S,)) =
{vi,ul + 1 < 4,5 < n} and E(S(n.Sy)) = {viviza : 1 <i < n-3}U
{vivig1: 1 <i < n—‘l}'U{vnvl}U{vjujl. 1<4,j < n}U{u{lu{H 1< <
n—3,1<75< n}U{uﬁugH c1<i<n—1,1<j<niu{uiu]: 1<j<n}
Let a be an integer and k > (n — 2)2a.

Define the edge labeling f : E(S(n.Sy,)) — Z — {0} as follows:

f(vivige) = f(u{uf_ﬂ) =2afor1<i<n-3,1<j<n,

floiu}) =k —(n—2)2a, f(uluy) = f(ujuy) = a,
f(u%uzlﬂ) =k—-afor2<i<n-—1,
flvauf) = f(vaut) =k — 2a,
fuiud) = f(ujup) =k — (n—4)a,

) (n—4)aq, for i is even,
f(u?ufﬂ) - { k—(n—2)a, fori isodd,i# 1,n.
flutuy) = f(ufuy) =k — (n—4)a,


Marisol Martínez
figu-1
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Flutur,,) = (n—4)a, for i is even,
T T B — (n—2)a, fori is odd, i # 1,n,

f(v]u{) =k—dafor3<j<n-1,

fwju}) = fwjul)=k—(n—>5afor3<j<n-—1,

f(ujuj )= (n—5)a, for i is even,3<j<n-—1,
VYT K —(n—3)a, fori isodd,i#1,n, 3<j<n-—1.

Then the induced vertex labeling f : V(S(n.S,)) — Ziis fT(v) = 0(mod k)
for all v € V(S(n.S,)). Hence f* is constant and it is equal to 0(mod k).
Since S(n.S,) admits Zi-magic labeling, it is a Zi-magic graph. O An
example of Zj3-magic labeling of S(7.57) is shown in Figure 2.

Figure 2: Zj3-magic labeling of 5(7.55)


Marisol Martínez
figu-2
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Theorem 2.3. The star of flower S(n.Fly,) is Zy-magic, when n is odd and
n > 3.

Proof.  Let the vertex set and the edge set of S(n.Fl,) be V(S(n.Fl,))
{v,v5u; - 1 <i<n}U{w,ul,v/: 1<4ij<n}and E(S (n.Fly))
1
1

PRI
{vvi, ujvi,wiv : 1 <i < nyU{vvip1: 1 <i<n-— 1}U{an1}U{wJ J
z’,jgn}u{ugvf: 1<i,j<n}U{ulw;: 1<ij<n}U{vlv vl
i<n—1,1<j<n}U{vivl: 1§]§n}u{vjv1 1<j<n}
Let a be an integer and k > 4a.
Define the edge labeling f : E(S(n.Fl,)) — Zy — {0} as follows:
flov;)) =a forl<i<mn,

VAVANI

flojwi)) =a for1<i<mn, flvu;)=k—aforl<i<n,
flowip) =a  for 1 <i<n—1, f(vyv1) =a,
f(wjvg) =a forl1<i,j<n,
flwlvl) =a for1<i,j<n,
flwjul) =k—aforl<ij<mn,
iy ) @ for i is odd, 1 <j<n,
Flovipn) = { k —3a, fori iseven, 1<j<n,

f(vjv{) =k—4dafor1 <j<n.

Then the induced vertex labeling f* : V(S(n.Fl,,)) — Zi is fT(v) = 0(mod k)
for all v € V(S(n.Fl,)). Hence f is constant and it is equal to 0(mod k).
Since S(n.Fl,) admits Zx-magic labeling, it is a Zp-magic graph. O
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An example of Zjp-magic labeling of S(3.Fl3) is shown in Figure 3.

Figure 3: Z1p-magic labeling of S(3.F13)

Theorem 2.4. The star of double wheel graph S(n.DW,,) is Z;-magic,
when n is odd and n > 3.

Proof. Let the vertex set and the edge set of S(n.DW,,) be V(S(n.DW,,)) =

{v,v5,u; + 1 <i<n}U {wz,uz,vf : 1 <4,7 <n}and E(S(n.DW,)) =
{vvi,vu; + 1 < <} U{vvipn, wiuier 0 1 <i <n— 13 U {opur, upur U
{wjvf,wjyg 3 1<i,j< n}U{vZJvfﬂ,ugu{H 1 <i<n-11<j5<
n}U{vlv],wu] 0 1<j<n}U{uui: 1<j<n}
Let a be an integer and k£ > 4a.
Define the edge labeling f:E(S(n.DW,)) — Z;, — {0} as follows:
flov) = flwjv; ) =2a for 1 <i,j <n,

vu;)) = flwjul) =k—2afor1<i,j<n,

f(

fvivigr) = (U@U/Z+1):k—a forl1<i<n-—1,
f(vn ) *f(unul) :k;—a,

flujuy) =da  for1<j<m,

f(Z] +1)—/<:—afor1<z<n—11<]<n


Marisol Martínez
figu-3


Zi.-Magic Labeling of Star of Graphs 39

fwivl) =k—aforl1<j<n,

f(jj ):{k—a, for i is odd, 1 <j <n,

i it 3a, for i is even, 1 <j <n.

Then the induced vertex labeling f : V(S(n.DW,,)) — Zi is fT(v) = 0(mod k)
for all v € V(S(n.DW,,)). Hence f7 is constant and it is equal to 0(mod k).
Since S(n.DW,,) admits Zi-magic labeling, it is a Zx-magic graph. O

An example of Zs-magic labeling of S(3.DW3) is shown in Figure 4.

Figure 4. Zs-magic labeling of 5(3.DWs)

Theorem 2.5. The star of cylinder graph C,0Ps is Zi-magic, when n is
odd and n > 3.

Proof.  Let the vertex set and the edge set of S(n.(C,0P)) be
V(S(n.(C,OR))) = {vi,u; : 1 <i<n}U{v],ul: 1<4j<n}and
E(S(n.(ChOR))) = {vvig, wiuipr = 1 <0 < n— 1} U {vvr, upug b U
{viu; = 1 <4 < n}U{u]u{ : 1. <j< n}U{vifo,@@H 1< <
n—11<j< n}U{ojol,udu] 1 <j<npufvu @ 1 <idj<
n}U{ujul :1<j<n}.


Marisol Martínez
figu-4
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Let a be an integer and k > 4a.
Define the edge labeling f : E(S(n.(CrOF,))) — Z;, — {0} as follows:
foigr) = f(vgvzj-ﬂ) =afor1<i<n-1,1<j5<n,

flujuipr) =k —afor 1 <i<n—1, flupgur) =k —a,
foiwi)) =flul)=k—2afor1<i<n,1<j<mn,
k—a, fori isodd,1<j<n
Ja,J —_ ) 9y — — 9
Fluguiy) = 3a, for i is even, 1 < j<mn,

f(uju{) =4a for 1 <j<n.

Then the induced vertex labeling f* : V(S(n.(C,0R))) — Zj is
ft(v) = 0(mod k) for all v € V(S(n.(C,OP2))). Hence f* is constant
and it is equal to 0(mod k). Since S(n.(C,0P,)) admits Zi-magic label-
ing, it is a Zx-magic graph. O

An example of Zg-magic labeling of S(5.(C5s0F,)) is shown in Figure 5.

Figure 5. Zp-magic labeling of 5(5.C5 x Pa)

Theorem 2.6. The star of generalised Jahangir graph S(n.Jps) is Zj-
magic, when n is odd, n > 3 and s > 2.


Marisol Martínez
figu-5
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Proof.  Let the vertex set and the edge set of S(n.J,, s) be V(S(n.Jy ) =
{v,o;: 1<i<njU{v;: 1<i<n1<j<s—11U{w: 1<1<
n}U{vé 1<l < n}U{va 1 <4l <nl<j<s—1} and
E(S(n.Jns)) ={vv;: 1 <i<n}U{vjvi;: 1<j<npU{vvije: 1<
i<n,1<j<s—1 U{vi s 1vir1: 1 <i <n—1}U{vps 101 JU{vvl : 1<
i < nyU{wolwiul 0 1< il < n}u{vﬁfuij 1 <41 <nl
j<s—13u{vo,; 0 1<i<n-11<j<s—-11<I
nU{vl, vy 1<i<n—1,1<1< npuU{vr, vi: 1<1<n}

Let a be an integer and k& > (n — 1)a.
Define the edge labeling f : E(S(n.Jys)) — Z; — {0} as follows:
flovy) =k —(n—1)a,
flov;)) =afor 2 <i<mn,

For 1 <j <mn,
k—a, forj is odd,
f(Uj'Ul,J) - { k —2a, for j is even,

For 7 is odd.
| a, for j is odd,
f(vijvijr) = k—a, forj iseven,
For 7 is even.
2a, for j is odd,

U. IL) . pr— . .
f( i, w+1) k —2a, forj is even,

f(v1vd) =k —(n—3)a,

fvvh) @ for 2<i<mn,
flwpl) =k—(n—1)a for 1<1<n,
f(wlvg) =a for 2<i<n,1<I<n,
L1y ) (n—=2)a, for ¢ is odd,
Flojuin) = { k—(n—2)a, fori is even.
For i is odd.
k—(n—2)a, forjis odd
1 .1 _ ) )
F030041) = (n —2)a, for j is even.

For 7 is even.
11 _J (n—=1)a, for j is odd,
f(vi,jvi,jﬂ) ) k- (n—1)a, for j is even,
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F(olol ) = @, foriisodd, 2 <1 <mn,
B k‘—@, for i is even, 2 <[ < n.
For ¢ is odd.

Fl ol ) = k— n_23)a, for jis odd, 2 <[ < n,
A n_23 = for 7 is even, 2 <1 < n.
For ¢ is even.

(n—1)a

, for 7 is odd, 2 <[ < n,
F 0l 540) = 2 (ni1)a

k
5
Then the induced vertex labeling f* : V(S(n.Jns)) — Zg is f(v) = 0(mod k)
for all v € V(S(n.Jys)). Hence fT is constant and it is equal to 0(mod k).
Since S(n.Jps) admits Zi-magic labeling, it is a Zp-magic graph. O

for j is even, 2 <[ < n.

An example of Zjp-magic labeling of S(5..J52) is shown in Figure 6.

Figure 6: Zyg-magic labeling of 5(5.J53)


Marisol Martínez
figu-6
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Theorem 2.7. The star of wheel graph S(n.W,,) is Zy-magic, when n is
odd and n > 3.

Proof. Let the vertex set and the edge set of S(n.W,,) be V(S(n.W,))
{U,ui,vj,ug t 1 <45 < n}and E(S(nW,)) = {vy; + 1 <4 < nf}
{uuizr = 1 Sign—l}u{unul}u{wju{' 1<y <n}u{uZ i c 1
ign—l,lgjgn}u{u%u{: 1§j§n}u{uju1: 1<j<n}.

IN C I

Let a be an integer and k > (n — 1)a.

Define the edge labeling f : E(S(n.W,,)) — Z; — {0} as follows:

fvur) =k — (n —1)a,
flw ujl):k (n—1)a for 1<j<n,
flvu;)) =a for 2<i<n,
flwjul)=a for 2<i<n,1<j<mn,

(ntl)a for ¢ s odd
fuiuigr) :{ K 2 (0 1)a o i ’
— 522, for i is even,
f(uju ) = w, for ¢ is odd,1 <j < n,
P k — @, for 7 is even,1 < j < n,

f(uju{) =k — 2a.

Then the induced vertex labeling f* : V(S(n.W,,)) — Zy is fT(v) =
0(mod k) for all v € V(S(n.W,,)). Hence f* is constant and it is equal
to 0(mod k). Since S(n.W,) admits Zi-magic labeling, it is a Zj-magic
graph. O
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An example of Zg-magic labeling of S(7.W7) is shown in Figure 7.

Ug 'E.'4
Figure 7: Zg-magic labeling of S(7.W7)

Theorem 2.8. The star of generalised Peterson graph S(n.Py, ) is Zj-
magic, when n is odd, n > 3.

Proof.  Let the vertex set and the edge set of S(n.P,,m) be V(S (n.Py,m)
{vi,up = 1 <@ < npU{ul,v] @ 1 <d,j < n} and E(S(n.Poym))

17 7
{oigm, viwg - 1 <i <npU{ujuipr 0 1< < n—1}U{unul}u{ujzﬂ1 :
j Sn}U{vaerm: 1<4,j<npu{vie: 1<ij Sn}U{ufugH :
i<n—-1,1<j<n}U{uiul: 1<j<n}
Let a be an integer and k£ > 4a.
Define the edge labeling f : E(S(n.Pym)) — Z, — {0} as follows:
f(vivigm) = a for 1 <i<n,
flvl, Y=a for 1 <i,j <mn,

i Yi+m


Marisol Martínez
figu-7
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fviu;)) =k —2afor1<i<n,
flul) =k—2afor1<i,j<n,
flujuiz1) =k—a for1<i<n-1,
flupuy) =k —a,
(il ) = k—a, fori isodd, 1<j<n,

il 3a, for i is even, 1 <j <mn,
f(uju{) =4a for 1 <j<n.
Then the induced vertex labeling f+ : V(S(n.Pym)) — Zi is fT(v) = 0(mod k)
for allv € V(S(n.P,m)). Hence f is constant and it is equal to 0(mod k).
Since S(n.Pym) admits Zi-magic labeling, it is a Z;-magic graph. O

An example of Zg-magic labeling of S(5.Ps 2) is shown in Figure 8.

Figure 8: Zg-magic labeling of S(5.P(5,2))


Marisol Martínez
figu-8
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Theorem 2.9. The star of lotus inside a circle S(n.LCy,) is Zi-magic,
when n is odd and n > 3.

Proof. Let the vertex set and the edge set of S(n.LC),) be V(S(n.LCy,)) =
{u,vj,u; + 1 <@ < n}U{wJ,uz,vf : 1 <4,5 <n}and E(S(n.LC,)) =
{uvi,viw; : 1 <i<nfU{viuipr: 1<i<n—1U{vpur} U{uuiqr 0 1<
i <n—1}0{upui fU{ujo] : 1 <j <n}pu{wjv! : 1<i,j <npu{v/ul: 1<
Qg <nyU{vlul,: 1<i<n—1,1<j<n}U{vju]: 1<j<n}

Let a be an integer and k > (n — 1)a.

Define the edge labeling f : E(S(n.LCy,)) — Z — {0} as follows:

fluvy) = f(wjv{) =k—(n—1)afor1<j<n,

fluvi) = f(wjv; ) =a for2<i<n,1<j<n,
floiur) = f(vlul) (n—2)a for 1 <j <n,
f(viug) :f(viu{)—k—Za for2<i<mn, 1<j<n,
f(UiUz+1):f(Uiuf*l)—afor1<z<n—1 1<j<n,
flopur) = fvlu]) =afor 1<j<mn,
Fluguipr) = k—a, for ¢ is odd,

YT (n—1)a, fori is even,

f(ugu ) = k —a, fori is odd, 1 <j<n,
2a, for i is even, 1 <j<n.

Then the induced vertex labeling f* : V(S(n.LC,,)) — Zi is f+(v) = 0(mod k)
)

for all v € V(S(n.LCy,)). Hence fT is constant and it is equal to 0(mod k
Since S(n.LC,) admits Zi-magic labeling, it is a Zx-magic graph. O
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An example of Zg-magic labeling of S(5.LCj) is shown in Figure 9.

Figure 9: Zg-magic labeling of 5{5.LC}x)

Theorem 2.10. The star of closed helm S(n.CH,,) is Zj-magic, when n
is odd and n > 3.

Proof. Let the vertex set and the edge set of S(n.CH,,) be V(S(n.CH,,)) =

{v,vi,ui,wj,u{,vzj :1<4,j <n}and E(S(n.CH,)) = {uvi,vl-m- 1<

< n}U{vvigr, uiuigr 2 1 <@ <n— 1} U{vpur,upur U {ujuf : 1 < j <
n}U{U{v{H,ugu{H c1<i<n—1,1<j<n}U{viv],uiul : 1<j<
n}U {wjvg,fugug : 1<i,5 <n}.

Let a be an integer and k > (n — 1)a.

Define the edge labeling f : E(S(n.CH,,)) — Z; — {0} as follows:
fwvr) =k~ (n - a,

flwjv))=k—(n—1)afor 1<j<mn,

flov;)) =a for 2<i<n,
I

wjvl)=a for 2<i<n,1<j<n,


Marisol Martínez
figu-9
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k—(n—1)a, fori is even,

fluur) =k —(n—1)a,
fiv]))=k—(n—1)afor 1<j<mn,
flow) =k—a for 2<i<n,
flul)=k—a for 2<i<n, 1<j<n,
Fvvit) _{ (n —1a, for i is odd,

Floid ) = (n—1)a, for i is odd, 1 <j <mn,
YT k—(n—1)a, fori is even, 1< j <mn,
o y_ ) (n=1a, for i is odd,
fluiuia) = { a, for ¢ is even,
ii y_ ) (n=1a, for i isodd, 1< j<n,
f(uiuiﬂ) N { k—(n—2)a, fori iseven,1<j<n,
f(uju]l) =k—(n-1)a.

Then the induced vertex labeling f : V(S(n.CH,,)) — Zy is f*(v) = 0(mod k)
for allv € V(S(n.CH,,)). Hence f is constant and it is equal to 0(mod k).
Since S(n.CH,) admits Zy-magic labeling, it is a Zx-magic graph. O



Zi-Magic Labeling of Star of Graphs 49

An example of Zjp-magic labeling of S(5.C Hj) is shown in Figure 10.

Figure 10: Z5-magic labeling of S(5.C'Hs)
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