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Abstract:

Distance is an important graph invariant that has wide applica-
tions in computing science and other fields of sciences. A topo-
logical index is a genuine number connected with compound
constitution indicating for relationship of compound structure
with different physical properties, synthetic reactivity or natural
action. The Schultz and modified Schultz polynomials and their
corresponding indices are used in synthetic graph theory as in
light of vertex degrees. In this paper, the Schultz and modified
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1. Introduction

Let G(V(G), E(G)) be a simple connected undirected graph with vertex set
V(@) and edge set E(G). Two vertices v and v in an undirected graph G
are called adjacent (or neighbors) in G if u and v are endpoints of an edge
e of G. The degree of a vertex u in an undirected simple graph, denoted
as d,, is the number of edges incident with it. The separation (distance)
between vertices u and v; d(u,v) is the quantity of edges in a most limited
way associating them. The biggest separation between any two vertices of
a graph G is known as the diameter of G, denoted as d(G). largest distance
between any two vertices of a graph G is called the diameter of GG, denoted
as d(Q).

While working on structural determination of the paraffin boiling points,
Wiener [22] characterized a descriptor that is known as Wiener index. A
great deal of topological indices have been presented, Wiener index is one of
the topological indices that connect with a portion of the physico-chemical
properties of the compound [1, 12]. Harry Shultz [19] presented another
distance based topological index known as Shultz index with some of the
physicochemical properties of the compound [1, 12]. Harry Shultz [19] in-
troduced another distance based topological index known as Shultz index

Se(@) = Y (du+dy)d(u,v)
{un}CV(@)

In [16] showed the close relation between the Schultz index and the Wiener
index. The modified Schultz index defined by Klavzar and Gutman [15] as:

SHG) = > (dudy)d(u,v)
{uv}CV(G)
The modified Schultz index is closely related to the Wiener index as shown
n [11]. Sc*(G) = 4W(G) — n(2n — 1). Hosoya [14] acquainted a distance-
based polynomial to generate distance distributions for graphs, called the
Wiener polynomial

H(G,z) = Z 2w
{uv}CV(G)

The first derivative of H(G,z) at x = 1 is equal to Wiener index of G.
Gutman [11] introduced new polynomials called the Schultz polynomial
and the modified Schultz polynomial as

Se(Gyz)= Y (du+dy) 2
{u,v}CV(G)
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ScH(Gx)= > (dudy) 2
{uv}CV(G)

Such that their derivative at z = 1 are equal to the Schultz and modi-
fied Schultz indices. He likewise acquired a few association between these
polynomials and Wiener polynomial of trees. For further details we refer
[2,3,4,5,6,7,8,9, 10, 13, 20].

The Schultz and modified Schultz polynomials and their correspond-
ing indices were set up in engineered outline speculation in light of vertex
degrees. In this paper, the Schultz and modified Schultz polynomials and
their corresponding indices for Mongolian tent graph, diamond graph and
double fan are computed.

2. Results and Discussion
The ladder graph, denoted by L,,, is the graph with vertex set
V(Lyp) = {us,v; : 1 <i<n}
and edge set
E(Lyp) = {wiuip1,vvi01 0 1 <i <n— 1} U {wv; 0 1 <d <nj}.

L,, is isomorphic to the grid P, x P,.

Mongolian tent, denoted by Mt,, is the graph obtained from the ladder
graph L, by adding a new vertex z and joining each vertex v;, 1 <i < n
with z. This graph is shown in Figure 1.

Figure 1: Mongolian tent graph M#,,

In the next theorem, the Schultz and modified Schultz polynomials and
their corresponding indices of Mongolian tent graph are studied.

Theorem 1. Let Mt, be a Mongolian tent graph with order n > 3. Then,


Marisol Martínez
fig-1
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e The Schultz polynomial and index of Mt,, are:
Sc(Mty, z) = (n?+25n—24)z + (5n% + 351 — 60)x2 + (72n — 188) 23 +
(3n% — 17n + 18)2*
Sc(Mty,) = 23n2 + 243n — 636.

e The Modified Schultz polynomial and index of Mt,, are:
Sc*(Mty,x) = (4n? + 35n — 51)z + (11n? + 4Tn — 115)22 + (1150 —
321)1,3 4 (9n27527n+74)$4
Sc*(Mty,) = 44n? + 360n — 996.

Proof. Consider the graph of Mongolian tent Mt, with n > 3. The
order of Mt, is equal to 2n + 1, in which 2 vertices of Mt, have degree 2,
n vertices of Mt, have degree 3, n — 2 vertices of Mt, have degree 4 and
only one vertex has degree n.

Thus, we divide the vertex set V(Mt,,) in four partitions:

Vo ={veV(Mt,):d, =2}

Vs ={v e V(Mty):d, =3}

Vi ={v e V(Mt,) : d, = 4}

Vo ={veV(Mt,):d, =n}

From Figure 1, the size of these four subsets are [Va| = 2, |V3| = 3, |V4| =
n—2 and |V,| = 1. By using the hand shaking lemma the size of Mongolian
tent graph Mt, is equal to

[B(Mt,)| = 312 % [Va] 43 x [Va] +4 x [Va] 41 x V|| = tdntnsin
dn — 2.

From Figure 1, it is easy to see that for every vertices u,v € V(Mty,), 3 d(u,v) €
{1,2,3,4}.

Now, from the structure of the Mongolain tent graph Mt,, we compute
all terms of the Schultz polynomial, modified Schultz polynomial of Mt,,
based on the number of d(u,v) V u,v € V(Mt,).

Here, consider d(u,v) =1 (Y u,v € V(Mt,)), so from edge set E(Mt,,),
we can see that there are 4 paths with length one or 4 edges uv € E(Mt,,)
for vertex u € Vo C V(Mt,) and a vertex v € V3 C V(Mt,) such that
dy+d, =5 and d, xd, = 6. For a vertex u € V3 C V(Mt,), there are n—3
paths with length one until to a vertex v € V3 such that d, +d, =3+3 =06
and dy X d, = 3 x 3 = 9; there are n 1l-edges paths between the vertices
u € V3 C V(Mty,) and v € Vy C V(Mt,) such that d, +d, =3+4 =17,
dy X dy = 3 x4 = 12, there are 2 1-edges paths between the vertices
u € Vs C V(Mt,) and v € V,, C V(Mt,) such that d,+d, =3+n=n-+3,
dy X dy = 3 X n = 3n; there are n — 3 1-edges paths between the vertices
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u,v € Vy C V(Mty,) such that d, +d, =4+4 =28, d, xd, =4 x4 =16;
there are n — 2 1-edges paths between the vertices u € V3 C V(Mt,) and
v eV, C V(Mt,) such that d, +d, =4+n=n+4,d, xd, =4 xn =4n.
Therefore the first term of Schultz and modified Schultz polynomial of Mt,,
will be 5(4)z+6(n—3)z+7(n)z+(n+3)2c+8(n—3)x+ (n+4)(n—2)z =
(n? 4 25n — 24)z and 6(4)x + 9(n — 3)z + 12(n)z + (3n)2x + 16(n — 3)x +
(4n)(n — 2)z = (4n® + 35n — 51)z, respectively.

In case d(u,v) = 2, u,v € V(Mt,) : there are 2 2-edges paths between
the vertices u € V5 and v € V3 C V(Mt,) such that d, +d, =5, dy, x d, =
2 x 3 = 6; there are 4 2-edges paths between the vertices u € Vo C V/(Mt,,)
and v € Vy C V(Mty,) such that d, +d, =24+4=6,d, Xd, =2x4=28;
there are 2 2-edges paths between the vertices u € Vo C V(Mt,) and
v €V, C V(Mt,) such that d, +d, = 2+ n, d, X d, = 2 xn = 2n,
there are n + 1 2-edges paths between the vertices u,v € V3 C V(Mt,)
such that d, + d, = 3+3 =6, d, X dy, = 3 x3 = 9; there are 6n — 14
2-edges paths between the vertices u € V3 C V(Mt,) and v € Vy C V(Mt,,)
such that d, +dy, =34+4=7,d, X dy, = 3 x4 = 12; there are n — 2 2-
edges paths between the vertices u € V3 C V(Mty,) and v € V,, C V(Mt,)
such that dy, +d, = 34+ n = n+3, d, X d, = 3 xn = 3n. Finally,
there are n — 4 + &2@74) 2-edges paths between all vertices u,v € Vg C
V(Mty) such that d, +d, =4+ 4 =8, dy, xd, =4 x4 =16. Then the
second term of Schultz and modified Schultz polynomial of Mt, is equal to

(104244 244604647 (60— 14) +(n+3) (n—2)+8(n— 4+ =204 ) [ 22 —
(5n2 +36n — 60)2% and [12+ 32+ 4n +9n+ 9+ 12(6n — 14) +3n(n — 2) +
16(n —4+ %n;@)}ﬁ = (11n% + 47n — 115)22, respectively.

In case d(u,v) = 3, u,v € V(Mt,) : there are 2 3-edges paths between
the vertices u € Vo and v € V3 C V(Mt,) such that d, +d, =5, dy, X d,, =
2x3 = 6; there are 2n 3-edges paths between the vertices u € Vo C V(Mt,,)
and v € Vy C V(Mty,) such that d, +d, =24+4=6,d, Xd, =2x4=28;
there are 3n — 5 3-edges paths between the vertices u,v € V3 C V(Mt,)
such that d, +d, = 3+ 3 = 6, dy X d, = 3 x 3 = 9. Finally, there
are 6n — 24 3-edges paths between the vertices u € V3 C V(Mt,) and
u € Vy C V(Mt,) such that d, +d, =3+4="7,d, xd, =3 x4 =12.
Then the third term of Schultz and modified Schultz polynomial of Mt,
is equal to [10 + 12n + 6(3n — 5) + 7(6n — 24)]1‘3 = (72n — 188)x3 and
[12 + 16n +9(3n — 5) + 12(6n — 24)}1:3 = (115n — 321)a3, respectively.

In case d(u,v) =4, u,v € V(Mt,) : there are 1 4-edges paths between
all vertices u,v € Vo C V(Mt,) such that d, +d, =2+2 =4, d, xd, =
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2 X 2 = 4; there are 2n — 8 4-edges paths between the vertices u € Vo C
V(Mt,) and v € V3 C V(Mt,) such that d, +d, =2+3 =05, d, X d, =
2 x 3 = 6. Finally, there are W 4-edges paths between all vertices
u,v € V3 C V(Mty) such that d, +d, =3+3=6,d, xd, =3 x3=09.
Then the fourth term of Schultz and modified Schultz polynomial of Mt,
is equal to [4 +5(2n — 8) + 6(%)}3:4 = (3n? — 17n + 18)z* and

[4 +6(2n—8)+ 9(%)}& = (W)m‘l, respectively.

Hence, Schultz and modified Schultz polynomials of Mt, are:

Se(Mtp,z)= Y (dy+ dy)zhwv)
u,weV (Mty)
= (n®+25n—24)x+ (5n%+35n—60)22 + (72n — 188)2 + (3n% — 17n +18)z*
Sc*(Mty,x) = % (dy x dy)zd®v)
u,veV (Mty)

— (4n2+35n—51)z+ (1102 +47n—115)2% + (1150 —321) 73 4 (2250474 4
By definitions of the Schultz and modified Schultz indices, we have
Se(Mty) = 25t}

= 8% <(n2 +25n — 24)x + (5n2 + 350 — 60) 2% + (72n — 188)x3 + (3n2 — 1Tn +

18)954) ot
= 23n2 + 243n — 636.

(a2l

= a%((%? + 35n — 51)z + (11n% + 47n — 115)2? + (115n — 321)a3 +

2_
(Qn 527n+74)x4 |x=1

= 44n? + 360n — 996. Which completes the proof.

O Diamond graph, denoted by D,, is the graph obtained from the
Mongolian tent graph Mt, by adding a new vertex z; and joining each
vertex x;, 1 < 4 < n with 2;. This graph is shown in Figure 2. The
Schultz and modified Schultz polynomials and their corresponding indices
of Diamond are determined in the following theorem.
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Figure 2: Diamond graph D,

Theorem 2. Let D,, be a Diamond graph with order n > 3. Then,

e The Schultz polynomial and index of D,, are:
Sc(Dy, ) = (2n% +32n — 28)z + (1002 + 28n — 42) 22 + (18n? — 24n —
24)23
Sc(Dy) = 76n2 + 16n — 184.

e The Modified Schultz polynomial and index of D,, are:
Sc*(Dp,x) = (8n% +44n — 62)z + (24n2 4 28n — 86)2? + (n3 + 32n? —
64n — 28)23
Sc*(Dy) = 3n3 + 152n% — 92n — 318.

Proof. Consider the graph of Diamond D,, with n > 3. The order of D,,
is equal to 2n + 2, in which 4 vertices of D,, have degree 3, 2n — 4 vertices
of D,, have degree 4 and two vertices have degree n.

Thus, we divide the vertex set V(D,,) in three partitions:

Vs ={veV(D,):d, =3}

Vi={veV(D,):d, =4}

Vi={veV(D,):d,=n}

From Figure 2, the size of these three subsets are |V3| =4, |V4| = 2n—4
and |V,,| = 2. By using the hand shaking lemma the size of Diamond graph
D,, is equal to

E(Da)] = 313 % [Va] + 4 x [Va] + 1 x [Vy]] = L288mbin — 5y _ o

From Figure 2, we can see that there are distance between vertices of
graph D,, are up to three and the diameter equal to 3.

Now, from the structure of the Diamond graph D,, we compute all
terms of the Schultz polynomial, modified Schultz polynomial of D,,, based
on the number of d(u,v) ¥ u,v € V(D,,).


Marisol Martínez
fig-2
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Table 2.1: All cases of d(u,v)-edge-paths d(u,v) = 1,2,3 of the Diamond
graph D,

distance degrees of ~ Number of Term of Schultz  Term of Modified
dlu,v) =1 dy, & d, i-edges paths polynomial Schultz polynomial

1 (3,3) 2 12 18
(3,4) 4 28 48
(3,n) 4 4n + 12 12n
(4,4) 3n—8 24n — 64 48n — 128
(4,m) 2n — 4 2n% +4n — 16 8n? — 16n

2 (3,3) 2 12 18
(3,4) 4n + 2 28n + 14 48n + 24
(3,n) 4 4n + 12 12n
(4,4) n?—n-—38 8n? — 8n — 64 1612 — 16n — 128
(4,m) 2n — 4 2n% +4n — 16 8n? — 16n

3 (3,3) 4 24 36
(3,4) 8n — 16 56m — 112 96n — 192
(4,4) 2n% —10n +8 16n% —80n + 64  32n% — 160n + 128
(n,n) n 2n2 n3

By using the Table 1, we obtain the followings:

e coefficient first term of the Schultz polynomial: 2n? + 32n — 28

e coefficient second term of the Schultz polynomial: 10n2 4 28n — 42
e coefficient third term of the Schultz polynomial: 18n? — 24n — 24

e coefficient first term of the modified Schultz polynomial: 8n%+44n—62

e coefficient second term of the modified Schultz polynomial: 24n? +
28n — 86

o coefficient third term of the modified Schultz polynomial: n3+32n? —
64n — 28

Hence, Schultz and modified Schultz polynomials of D,, are:
Se(Dp,z) = Y (dy + dy)x? )
u,v€V (Dp)
= (2n2 + 32n — 28)x + (10n2 4 28n — 42)2? + (18n? — 24n — 24)2>
Sc*(Dy,z) = S (dy X dv)md(uw)
u,v€V (Dy)
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= (8n2 + 44n — 62)x + (24n? + 28n — 86)z% + (n3 + 32n? — 64n — 28)z3

By definitions of the Schultz and modified Schultz indices, we have
Se(Dy) = 25eDn))

=2 ((2n2 +32n — 28)x + (10n2 + 28n — 42)22 + (18n? — 24n — 24)333> |lo=1

= 76n2% + 16n — 184.
SC*(Dn) = 98¢ (gme) ’x:l

=2 ((8n2+44n—62)x+(24n2+28n—86)a:2+(n3+32n2—64n—28)x3> |l z=1

= 3n3 4 152n2 — 92n — 318. Which completes the proof. O
Fan graph, denoted by f,, is the graph obtained from the path with n
vertices P,, where V(P,) = {v1,v2,...,v,} and E(P,) = {vjvit1: 1 <i <
n — 1} by adding a new vertex z and joining each v;, 1 < ¢ < n with z.
Double fan graph, denoted by df),, is the graph obtained from the fan
fn by adding a new vertex z; joining each v;, 1 < i <n with z;.

Theorem 3. Let df, be a double fan graph with order n > 5. Then,

e The Schultz polynomial and index of df,, are:
Sc(dfp, ) = (2n? + 16n — 14)z + (18n? — 76n — 218)x?
Sc(df,,) = 38n? — 136n — 450.

e The Modified Schultz polynomial and index of df,, are:
Sc*(dfp,x) = (8n2 + 12n — 24)x + (n3 + 32n2 — 160n — 422)z>
Sc*(dfy,) = 2n3 + 72n% — 308n — 868.

Proof.  Consider the graph of double fan df, with n > 5. The order of
dfy is equal to n+ 2, in which 2 vertices of df,, have degree 3, n — 2 vertices
of df,, have degree 4 and two vertices have degree n.

Thus, we divide the vertex set V(dfy,) in three partitions:

Vs ={veV(df,):d, =3}

Vi ={veV(dfy,):d, =4}

Vi ={veV(dfy,):d,=n}

The size of these three subsets are |V3| = 2,|V4| =n —2 and |V,,| = 2.
By using the hand shaking lemma the size of double fan df;,, is equal to

|E(dfn)| = 3 % [V3] +4 x |Va| + 1 x |V,|] = SR80 — 3 — 2,

The diameter of double fan df, equal to 2.

Now, from the structure of the double fan df,,, we compute all terms of
the Schultz polynomial, modified Schultz polynomial of df,,, based on the
number of d(u,v) ¥V u,v € V(dfy,).
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Table 2.2: All cases of d(u,v)-edge-paths d(u,v) = 1,2 of the double fan
dfn.

distance degrees of Number of Term of Schultz Term of Modified

dlu,v) =1 dy, & d, i-edges paths polynomial Schultz polynomial
1 (3,4) 2 14 24
(3,n) 4 4dn + 12 12n
(4, 4) n—3 8n —24 16n — 48
(4,n) 2n — 4 2n2 + 4n — 16 8n2 — 16n
2 (3,3) 2 12 18
(3,4) 4n — 10 28n — 70 48n — 120
(4,4) 2n2 —13n 4+ 20 16n% — 104n — 160  32n2% — 208n — 320
(n,n) n 2n2 n3

By using the Table 2, we obtain the followings:

e coefficient first term of the Schultz polynomial: 2n? 4+ 16n — 14

e coefficient second term of the Schultz polynomial: 18n% — 76n — 218
e coefficient first term of the modified Schultz polynomial: 8n%+12n—24

e coefficient second term of the modified Schultz polynomial:n3+32n2 —

160n — 422
Hence, Schultz and modified Schultz polynomials of df,, are:
Se(dfp,x) = % (dy + dy)zd?)
u,veV (dfy)

= (2n2 + 16n — 14)x + (18n? — 76n — 218)x?

Sc*(dfn,x) = % (dy X dy)zd )
u,veV (dfy)

= (8n? 4+ 12n — 24)z + (n? + 32n? — 160n — 422)22
By definitions of the Schultz and modified Schultz indices, we have
Se(df,) = L8Ldhnr))

=2 <(2n +16n — 14)z + (18n2 — T6n — 218):U2> lo=1

= 38n? — 13[55571*—(1450.
Sc*(df,) = === (f(;xf"’x) |z=1

= 6@ <(8n2 +12n — 24)z + (n® + 32n2 — 160n — 422):52) la=1
= 2n3 + 72n? — 308n — 868. Which completes the proof. O
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Closing Remarks

In this paper, we proved Schultz and modified Schultz polynomials for Mon-
golian tent graph (Mt, ), Diamond graph (D,,), double fan (df,,). In future,
we are interested to plan some beginning designs/systems and after that
review their topological indices which will be very helper to comprehend
their hidden topology.
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