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1. Introduction

All graphs in this paper are finite, simple, connected and undirected graph
in [2, 3, 7]. The concept of star chromatic number was introduced by
Branko Grunbaum in 1973. A star coloring [1, 5, 6] of a graph G is a
proper vertex coloring in which every path on four vertices uses at least
three distinct colors. Equivalently, in a star coloring, the induced subgraph
formed by the vertices of any two colors has connected components that
are star graph. The star chromatic number χs (G) of G is the least number
of colors needed to star color G.

Guillaume Fertin et al. [5] determined the star chromatic number
of trees, cycles, complete bipartite graphs, outer planar graphs and 2-
dimensional grids. They also investigated and gave bounds for the star
chromatic number of other families of graphs, such as planar graphs, hy-
percubes, graphs with bounded treewidth and cubic graphs and planar
graphs with high - girth.

Albertson et al. [1] showed that it is NP-complete to determine whether
χs (G) ≤ 3, even when G is a graph that is both planar and bipartite.
Coleman et al. [4] proved that star coloring remains NP-hard problem
even on bipartite graphs.

For a given graph G = (V (G) , E (G)) with V (G) = S1 ∪ S2 ∪ S3 ∪
. . . St ∪ T where each Si is a set of all vertices of the same degree with at
least two elements and T = V (G) − St

i=1 Si. The degree splitting graph
[8, 9] of G, denoted by DS(G), is obtained by adding vertices w1, w2, . . . wt

and joining wi to each vertex of Si for 1 ≤ i ≤ t.

Let G1 and G2 be two graphs having disjoint point sets V1 and V2 and
line sets E1 and E2 respectively. Then their join [7] is denoted by G1+G2
consists of G1 ∪G2 and all lines joining V1 with V2.

2. Main Results

In the following section, we generalize the star chromatic number of degree
splitting of join of any two graph G and H denoted by G+H, where G is
a path graph and H is any simple graph. Also, we find the star chromatic
number for degree splitting of join of path graph G of order m with path
Pn, complete graph Kn and cycle graph Cn.
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2.1. Generalization of star coloring for degree splitting of join of
path graph with any simple graph

Theorem 2.1. Let G be a path graph of order m ≥ 4, and H be any
simple graph of order n ≥ 3 then

χs (DS (G+H)) = n+ 4.

Proof. Let V (G) = {u1, u2, u3, . . . , um} and V (H) = {v1, v2, v3, . . . , vn}.
By definition of join graph, G + H consists of G ∪ H and all lines join-
ing V (G) with V (H). Thus we have V (G + H) = {ui : 1 ≤ i ≤ m} ∪
{vj : 1 ≤ j ≤ n} = S1 ∪ S2 ∪ . . . ∪ St where S1 = {ui : 1 ≤ i ≤ m} . . . St =
{vj : 1 ≤ j ≤ n}. To obtain DS(G + H) from G + H, we add vertices
w1, w2, . . . , wt corresponding to S1, S2, S3, . . . , St respectively. Thus V (DS(G+
H)) = V (G+H) ∪ {w1, w2, w3 . . . , wt}

We define a function σ : V → {1, 2, . . .}. Now, we assign n+ 4 coloring
σ of degree splitting for join graph (G+H) is defined as follows:

For every 1 ≤ i ≤ m, we now distinguish m as three cases:

Case(i): When m ≡ 3(mod 3).

σ (u3k−2) = 1, for 1 ≤ k ≤ m

3

σ (u3k−1) = 2, for 1 ≤ k ≤ m

3

σ (u3k) = 3, for 1 ≤ k ≤ m

3

and for every 1 ≤ j ≤ n, assign

σ (vj) = j + 3

and also assign

σ (w1) = σ (w2) = · · · = σ (wt) = n+ 4.

Case(ii): When m ≡ 1(mod 3).

σ (u3k−2) = 1, for 1 ≤ k ≤
»
m

3

¼
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σ (u3k−1) = 2, for 1 ≤ k ≤
¹
m

3

º

σ (u3k) = 3, for 1 ≤ k ≤
¹
m

3

º
and for every 1 ≤ j ≤ n, assign

σ (vj) = j + 3

and also assign

σ (w1) = σ (w2) = · · · = σ (wt) = n+ 4.

Case(iii): When m ≡ 2(mod 3).

σ (u3k−2) = 1, for 1 ≤ k ≤
»
m

3

¼

σ (u3k−1) = 2, for 1 ≤ k ≤
»
m

3

¼

σ (u3k) = 3, for 1 ≤ k ≤
¹
m

3

º
and for every 1 ≤ j ≤ n, assign

σ (vj) = j + 3

and also assign

σ (w1) = σ (w2) = · · · = σ (wt) = n+ 4.

Therefore χs (DS (G+H)) ≤ n+ 4.
Now, we prove that χs (DS (G+H)) ≥ n+ 4. For this, we must prove

that any coloring with n+ 3 colors will give us at least one bicolored cycle
of length 4. Let Sm be the set colors used to color the vertices of V (G)
and let Sn be the set of colors used to color the vertices of V (H) then
Sm ∩ Sn = φ. Since all possible edges exist between vertices of V (G) and
the vertices of V (H). Suppose that we use n+ 3 colors for the vertices of
DS(G+H) then there exists at least one bicolored cycle of length 4. Which
is a contradiction for proper star coloring. Thus no coloring that uses n+3
colors can be a star coloring. Thus star coloring of DS(G +H) ≥ n + 4.
Therefore χs (DS (G+H)) = n+ 4. This completes the proof. 2
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Corollary 2.2. Let G be a path graph of order m > 4 and Pn be a path
graph of order n ≥ 4 and m > n then

χs (DS (G+ Pn)) = n+ 4.

Proof. We have V (G + Pn) = {ui : 1 ≤ i ≤ m} ∪ {vj : 1 ≤ j ≤ n} =
S1 ∪ S2 ∪ S3 where S1 = {u1, um} and S2 = {ui : 2 ≤ i ≤ m− 1; v1, vn}
S3 = {vj : 2 ≤ j ≤ n− 1}. To obtain DS(G+ Pn) from (G+ Pn), we add
three vertices w1, w2 and w3 corresponding to S1, S2 and S3 respectively.
Thus we get V (DS (G+ Pn)) = V (G+ Pn) ∪ {w1, w2, w3}.

Now, we assign n + 4 coloring σ of degree splitting for join graph
(G+ Pn) is defined as follows:

For every 1 ≤ i ≤ m, we now distinguish m as three cases:

Case(i): When m ≡ 3(mod 3).

σ (u3k−2) = 1, for 1 ≤ k ≤ m

3

σ (u3k−1) = 2, for 1 ≤ k ≤ m

3

σ (u3k) = 3, for 1 ≤ k ≤ m

3

and for every 1 ≤ j ≤ n, assign

σ (vj) = j + 3

and also assign

σ (w1) = σ (w2) = σ (w3) = n+ 4.

Case(ii): When m ≡ 1(mod 3).

σ (u3k−2) = 1, for 1 ≤ k ≤
»
m

3

¼

σ (u3k−1) = 2, for 1 ≤ k ≤
¹
m

3

º

σ (u3k) = 3, for 1 ≤ k ≤
¹
m

3

º
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and for every 1 ≤ j ≤ n, assign

σ (vj) = j + 3

and also assign

σ (w1) = σ (w2) = σ (w3) = n+ 4.

Case(iii): When m ≡ 2(mod 3).

σ (u3k−2) = 1, for 1 ≤ k ≤
»
m

3

¼

σ (u3k−1) = 2, for 1 ≤ k ≤
»
m

3

¼

σ (u3k) = 3, for 1 ≤ k ≤
¹
m

3

º
and for every 1 ≤ j ≤ n, assign

σ (vj) = j + 3

and also assign

σ (w1) = σ (w2) = σ (w3) = n+ 4.

Therefore χs (DS (G+ Pn)) ≤ n+ 4.

Now, we prove that χs (DS (G+ Pn)) ≥ n + 4. Suppose that we use
n + 3 colors for the vertices of DS(G + Pn) then there exist a cycle of
length 4 which is bicolored, a contradiction for proper star coloring. Thus
no coloring that uses n+3 colors can be a star coloring. Thus star coloring
ofDS(G+Pn) ≥ n+4. Therefore χs (DS (G+ Pn)) = n+4. This completes
the proof. 2

Corollary 2.3. Let G be a path graph of order m ≥ 4 and Kn be a
complete graph of order n ≥ 3 then,

χs (DS (G+Kn)) = n+ 4.
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Proof. We have V (G + Kn) = {ui : 1 ≤ i ≤ m} ∪ {vj : 1 ≤ j ≤ n} =
S1 ∪ S2 ∪ S3 where S1 = {u1, um} and S2 = {ui : 2 ≤ i ≤ m− 1} and
S3 = {vj : 1 ≤ j ≤ n}. To obtain DS(G + Kn) from (G + Kn), we add
three vertices w1, w2 and w3 corresponding to S1, S2 and S3 respectively.
Thus we get V (DS (G+Kn)) = V (G+Kn) ∪ {w1, w2, w3}.

Now, we assign n + 4 coloring σ of degree splitting for join graph
(G+Kn) is defined as follows:

For every 1 ≤ i ≤ m, we now distinguish m as three cases:

Case(i): When m ≡ 3(mod 3).

σ (u3k−2) = 1, for 1 ≤ k ≤ m

3

σ (u3k−1) = 2, for 1 ≤ k ≤ m

3

σ (u3k) = 3, for 1 ≤ k ≤ m

3

and for every 1 ≤ j ≤ n, assign

σ (vj) = j + 3

and also assign

σ (w1) = σ (w2) = σ (w3) = n+ 4.

Case(ii): When m ≡ 1(mod 3).

σ (u3k−2) = 1, for 1 ≤ k ≤
»
m

3

¼

σ (u3k−1) = 2, for 1 ≤ k ≤
¹
m

3

º

σ (u3k) = 3, for 1 ≤ k ≤
¹
m

3

º
and for every 1 ≤ j ≤ n, assign

σ (vj) = j + 3

and also assign

σ (w1) = σ (w2) = σ (w3) = n+ 4.

rvidal
Cuadro de texto
1077



1118 S. Ulagammal and Vernold Vivin J.

Case(iii): When m ≡ 2(mod 3).

σ (u3k−2) = 1, for 1 ≤ k ≤
»
m

3

¼

σ (u3k−1) = 2, for 1 ≤ k ≤
»
m

3

¼

σ (u3k) = 3, for 1 ≤ k ≤
¹
m

3

º
and for every 1 ≤ j ≤ n, assign

σ (vj) = j + 3

and also assign

σ (w1) = σ (w2) = σ (w3) = n+ 4.

Therefore χs (DS (G+Kn)) ≤ n+ 4.

Now, we prove that χs (DS (G+Kn)) ≥ n+4. For this, we must prove
that any coloring with n+3 colors will give us at least one bicolored cycle of
length 4. Suppose that we use n+3 colors for the vertices of (DS(G+Kn))
then there exists at least two adjacent vetices which receive the same color,
a contradiction for proper coloring. Thus no coloring that uses n + 3 colors
can be a star coloring. Thus star coloring ofDS(G+Kn) ≥ n+4. Therefore
χs (DS (G+Kn)) = n+ 4. This completes the proof. 2

Corollary 2.4. Let G be a path graph of order m ≥ 4 and Cn be a cycle
graph of order n ≥ 3 and m > n then,

χs (DS (G+ Cn)) = n+ 4.

Proof. We have V (G + Cn) = {ui : 1 ≤ i ≤ m} ∪ {vj : 1 ≤ j ≤ n} =
S1 ∪ S2 ∪ S3 where S1 = {u1, um}, S2 = {vj : 2 ≤ j ≤ m− 1}, and S3 =
{vj : 1 ≤ j ≤ n}. To obtain DS(G + Cn) from (G + Cn), we add three
vertices w1 w2, and w3 corresponding to S1, S2 and S3 respectively. Thus
we get V (DS (G+ Cn)) = V (G+ Cn) ∪ {w1, w2, w3}.

Now, we assign n + 4 coloring σ of degree splitting for join graph
(G+ Cn) is defined as follows:

For every 1 ≤ i ≤ m, we now distinguish m as three cases:

Case(i): When m ≡ 3(mod 3).
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σ (u3k−2) = 1, for 1 ≤ k ≤ m

3

σ (u3k−1) = 2, for 1 ≤ k ≤ m

3

σ (u3k) = 3, for 1 ≤ k ≤ m

3

and for every 1 ≤ j ≤ n, assign

σ (vj) = j + 3

and also assign
σ (w1) = σ (w2) = σ (w3) = n+ 4.

Case(ii): When m ≡ 1(mod 3).

σ (u3k−2) = 1, for 1 ≤ k ≤
»
m

3

¼

σ (u3k−1) = 2, for 1 ≤ k ≤
¹
m

3

º

σ (u3k) = 3, for 1 ≤ k ≤
¹
m

3

º
and for every 1 ≤ j ≤ n, assign

σ (vj) = j + 3

and also assign
σ (w1) = σ (w2) = σ (w3) = n+ 4.

Case(iii): When m ≡ 2(mod 3).

σ (u3k−2) = 1, for 1 ≤ k ≤
»
m

3

¼

σ (u3k−1) = 2, for 1 ≤ k ≤
»
m

3

¼

σ (u3k) = 3, for 1 ≤ k ≤
¹
m

3

º
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