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1. Introduction

The notion of probabilistic normed space was first introduced by Serstnev
[21] in 1963. In this theory, it has been observed that these spaces are noth-
ing but the generalization of real linear spaces in which the norm of a vector
is a distribution function rather than just a number. Situations where crisp
norm is unable to measure the length of a vector accurately, the notion of
probabilistic norm happens to be useful. Its theory is important as a gen-
eralization of deterministic results of normed linear spaces and provides
us important tools suitable for the study of topological spaces, geometry
of nuclear physics, linear operators, continuity properties, convergence of
random variables etc. Later this theory was generalised by many authors
[1, 13]. The idea of statistical convergence was first introduced by Stein-
haus [22] as well as by Fast [11] in 1951. Later on, Connor [5] and Fridy
[12] have shown that convergent sequences are statistically convergent, but
the converse is not true in general. The theory of statistical convergence
has been investigated by many authors in recent papers [8, 9, 18]. Karakus
[15] has introduced the idea of statistical convergence in P N-space in 2007.
The studies on sequence spaces in P N-space are due to [23, 24, 25, 26, 28].
The reader may refer to recent textbooks Bagar [4] and Mursaleen [17] for
sequence spaces, matrix transformations and related topics on summability
theory.

In [6], Connor has given an extension to the notion of statistical conver-
gence, where the asymptotic density is replaced by a finitely additive two
valued measure p. From Connor [6] itself, it is known that if a sequence
is p-density convergent with respect to a probabilistic norm N, then the
sequence is p-statistically convergent with respect to the same probabilistic
norm N; but the converse is not true in general. These two definitions are
equivalent, if 4 has the additive property for null sets (also called the APO
condition), which states that, if given a collection {4;};ev C I' of mutually
disjoint p-null sets (i.e., u(A4;) = 0, for all 4 € N) such that A, N A; = 0,
for i # j, then there exists a collection {B;};eny C T' with |A;AB;| < oo,
for each ¢ € N and B = U;B; € I' with u(B) = 0.

The notion of convergence of sequence of function is also considered
in measure theory. Wilczynski [29] studied the statistical convergence of
sequences of functions in 2000. Some classification may also be found in
[16].

This paper is a continuation of [10], where it is shown that p-statistical
convergence and convergence in p-density are equivalent only if 4 has the
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APO condition. Further, it is also observed that function sequences pre-
serve p-statistical convergence on a subset D of R, also called p-statistically
conservative on D. In this article, we show that this real space can be re-
placed by a probabilistic normed space (X, N, *). In other sense, our main
objective of the present paper is to introduce and investigate the conver-
gence in p-density and p-statistical convergence of sequences of functions
in PN-spaces. We also introduce the concepts of u-statistical uniform
convergence and p-statistical point-wise convergence for the sequences of
functions in PN-space. We show that all the results and characterizations
for the sequences of functions in real space shown in [10], can be extended
to the v-space (X, N, x). Moreover, we observe that p-statistical uniform
convergence for the sequences of functions in PN-space inherits the basic
properties of uniform convergence.

A brief sketch of the paper is as follows : Section 2 gives some basic
definitions and examples related to the topic. We give the definitions of
u-statistical convergence and convergence in u-density for the sequences of
functions in PN-spaces and discussed some of their properties and charac-
terizations in section 3. Section 4 deals with the function sequences that
preserves the p-statistical convergence in P N-space.

2. Preliminaries

Throughout the paper, N, R and R denote the sets of natural, real and
non-negative real numbers, respectively. Moreover, u will denote a complete
{0, 1}-valued finitely additive measure defined on a field T of subsets of N
that contains all finite subsets of N and suppose that u(A) = 0, if | 4| < oo;
if AC B and u(B) =0, then pu(A) =0; and p(N) = 1.

Definition 2.1. A function f : R — [0, 1] is called a distribution function
if it is non-decreasing, left-continuous with inf,cg f(t) = 0 and sup;cgr f(t) =
1.

Let D denotes the set of all distribution functions.

Definition 2.2. [19] A binary operation * : [0,1] x [0,1] — [0, 1] is said
to be a continuous t-norm if it satisfies the following conditions, for all
a,b,c,d € [0,1]:

1. ax1=a,

2. axb="bxa,
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3. axb<cxd, whenever a < c and b < d,

4. (axb)xc=ax(bxc).

Definition 2.3. [1] A triplet (X, N,x) is called a probabilistic normed
space (in short a PN-space) if X is a real vector space, N a mapping
from X into D (for x € X, the distribution function N(x) is denoted by
N, and N(t) is the value of N, at t € R) and * a t-norm satisfying the
following conditions:

1. N,(0) =0,

2. Np(t) =1, for all t > 0 if and only if x =0,

t
|

4. Npyy(s+1t) > Ny(s) x Ny(t), for all z,y € X and s,t € RT.

3. Nou(t) = Ny(—), for all « € R\ {0},

Example 2.4. [2] Let (X,||.||) be a normed linear space. Let a xb =
t

min{a, b}, for all a,b € [0,1] and N,(t) = TH:BH, z € X andt > 0. Then

(X, N, ) is a PN-space.

Definition 2.5. [2] A sequence x = (x}) in a PN-space (X, N, ) is said
to be convergent to L € X with respect to the probabilistic norm N, if
for every € > 0 and X\ € (0,1), there exists a positive integer ko such that
Nyg.—r(e) > 1 — A, whenever k > ko. In this case, we write N —limx = L.

Definition 2.6. [2] A sequence x = (x}) in a PN-space (X, N, ) is said
to be Cauchy sequence, if for every € > 0 and A € (0,1), there exists a
positive integer ko such that Ny, —,, (¢) > 1 — X, for all k,m > ky.

Definition 2.7. [2] A sequence x = (x}) in a PN-space (X, N, ) is said
to be bounded, if there exists ¢ > 0 such that N, (¢) > 1 — A, for every
A€ (0,1) and for all k.

Definition 2.8. [6] A sequence x = (xy,) is said to be u-density convergent
to L € X with respect to the probabilistic norm N, if there is an A € T’
with u(A) = 1 such that (xy — L)kea is convergent to 0 with respect to the
probabilistic norm N.
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Definition 2.9. [6] A sequence x = (x) is said to be u-statistically con-
vergent to L with respect to the probabilistic norm N, if for every € > 0
and A € (0,1), p({k € N : Ny, () < 1—A}) = 0. We denote it by
w— staty —limz = L.

Definition 2.10. [14] Let D be a subset of a PN-space (X, N,x*), then D
is said to be compact if each sequence of elements of X has a convergent
subsequence in D.

3. u-statistically and p-density convergent function sequences
in PN-space

In this section, we introduce the following definitions on p-density and
u-statistically convergent function sequences in PN-space. Let D be a
compact subset of (X, N, ) and let (f,,) be a sequence of functions on D.

Definition 3.1. The function sequence ( f,,) p-density point-wise converges
to f with respect to probabilistic norm N on D if and only if for each t € D
and for all e > 0, A € (0,1), there exists A; € I', with u(4;) = 1 and a
number ng = ng(e, A, t) € Ay such that Ny, y_f1)(€) > 1=, for alln > ng
and n € A;.

In this case, we write f, Nf (u — density) on D.

Definition 3.2. The function sequence ( f,,) u-density uniformly converges
to f with respect to probabilistic norm N on D if and only if for all € > 0
and A € (0,1), there exists A € T', with u(A) = 1 and a number ny =
no(e, A) € A such that Ny, 1)— ) (€) > 1= A, for all n > ng, n € A and for
every t € D.

In this case, we write f,Nf (1 — density) on D.

Definition 3.3. The function sequence (fy,) p-statistically point-wise con-
verges to f with respect to probabilistic norm N on D if and only if for each
t € D and for all e > 0, A € (0,1), we have u({n € N : Ny, —su)(€) <
1—-A}) =0.

In this case, we write f, Nf (1 — stat) on D.

Definition 3.4. The sequence (fy) of bounded functions on D is said to
be p-statistically uniformly convergent to f with respect to probabilistic
norm N if and only if for all e > 0 and A € (0,1), we have u({n € N :
Ny (—f)(€) 1 —=A}) =0, for every t € D.
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In this case, we write f,Nf (u — stat) on D.

As in the ordinary case, if a function sequence is u-density point-wise
convergent with respect to a probabilistic norm N, then the function se-
quence is p-statistically point-wise convergent with respect to the proba-
bilistic norm IV; and, of course for bounded functions, if a function sequence
is p~density uniformly convergent with respect to a probabilistic norm N,
then the function sequence is p-statistically uniformly convergent with re-
spect to the probabilistic norm N. However, if y has the APO condition,
then u-density point-wise convergence with respect to a probabilistic norm
N and p-statistically point-wise convergence with respect to the probabilis-
tic norm NN are equivalent; and p-density uniform convergence with respect
to a probabilistic norm N and p-statistically uniformly convergence with
respect to the probabilistic norm NN are equivalent.

The following result is a u-statistical analogue of a well known result in
the sense of a probabilistic norm V.

Theorem 3.5. Let (f,) be a sequence of continuous functions on D. If
faNf (1 — density) on D, then f is continuous with respect to the proba-
bilistic norm N on D.

Proof.  Suppose that f,Nf(u — density) on D. Then, for every € > 0
and v € (0,1), there exists A € I', with u(A) = 1 and ng = no(e, A) in A
such that

Ny, )t (€/3) > 1=,

for all n > ng, n € A and for all t € D.
Let t9p € D. Since f,, is continuous at tg € D, so for all ¢ > 0 and
7 €(0,1),
N fug(6)—fao t0)(€/3) > 1 = 1.

Choose A € (0,1) such that (1 —~)*(1—7)*(1—+) > 1—A. Then, for
all t € D, we have

N1 (6)=£(20) (€) = N{FW)— g (0)+Fng ()= Fing (t0)+-{ fng (t0) — F(t0) } (26 /3 + €/3)
2 NLF() = g ()} +{Fng ()= Fng (t0)} (26/3) * N, (1)~ f(20) (€/3)
2 Nf(t) g (1) (E/3) ¥ N (6)= g (t0) (€/3) * N, t0)—f(20) (€/3)
>[I =7)x(1—=v)x(1-7)
>1— A
Since tg € D is arbitrary, so f is continuous with respect to the probabilistic
norm N on D.
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Corollary 3.6. Let (f,) be a sequence of continuous functions on a com-
pact subset D of (X, N, *) and let . be a measure with the APO condition.
If fuNf (pu — stat) on D, then f is continuous with respect to the proba-
bilistic norm N on D.

Example 3.7. Let D be a compact subset of (X, N,*) and pu(A) = 1.
Define a function f, : D — X such that

1, ifn¢ A
Jalt) = { 2, ifne A
for allt € D.
Then, we have f, N f (u—density) on D and consequently, we have f, N f (u—
stat) on D. Though f, and f are all continuous on the compact subset D
of the PN-space (X, N, %), it follows from Definition 3.4 that (f,) is not
u-statistically uniformly convergent, as

p({n € N: Ny y—ypy(e) S1=A}) =1

The next result is an analogue of Dini’s theorem in probabilistic normed
space (X, N, ).

Theorem 3.8. Let u be a measure with the APO condition. Let D be
a compact subset of a PN-space (X, N,x) and let (f,) be a function se-
quence that are continuous with respect to the probabilistic norm N on
D. Suppose that f is continuous with respect to the probabilistic norm N
and f,Nf (u — stat) on D. Furthermore, let (f,) be monotonic decreas-
ing on D, i.e., fp(t) > fo+1(t), for every t € D and n = 1,2,.... Then
faNf (1 — stat) on D.

Proof.  Let g,(t) = fn(t) — f(t). Then, by the hypothesis, each g, is
continuous and ¢,NO (u — stat) on D. Moreover, (gn) is a monotonic
decreasing sequence on D. Since ¢, NO (i — stat) on D and u has the APO
condition, so g,NO (u — density) on D. Thus, for every ¢ > 0, v € (0,1)
and for each ¢t € D, there exists Ay € T, with u(A;) = 1 and n(t) =
n(e, A\, t) € Ay such that Ny (4)(e/2) > 1 -, for all n > n(t), and n € A;.

Since g,y is continuous at ¢ € D with respect to the probabilistic norm
N, so for every € > 0 and «y € (0, 1), there exists an open set K (¢) containing
t such that

Ngn(t)(w)*gn(t)(t)(g/m >1-—7,
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for all z € K(t). Now, we choose A € (0, 1) such that (1—v)*(1—7) > 1—A.
Then, by monotonicity, we have for ¢ > 0 and v € (0,1)

Ngn(x) (E) > Ngn(t)(x) (E)

= Noo @) =gn(0 O+ 90 () (/2 + €/2)

2 Ngn(t) (T)=Gn ) (1) (€/2) * Ngn(t)(t) (€/2)

> =7)x(1=9)

>1— ),

for all n > n(t), n € A; and for every = € K ().

Since D is a compact set and D C Jep K (t), so by the Heine-Borel
theorem, D has a finite open covering such that D C K(t1) UK (t2)U...U
K(tm). Let A := Ay, N Ay, N...N A, and N = max{n(t1),...,n(tm)}
We observe that p(A) = 1. Then, for every € > 0 and X\ € (0,1), we have
Ny, (e) >1 =X forallz € D, n > N and n € A. Hence, g,N0 (u —

gn
density) on D. Consequently, g,NO (u — stat) on D, and hence the proof.

We, now give the following two definitions, the first one on p-Cauchy
function sequence and the second one on p-statistically uniformly Cauchy,
both in the sense of probabilistic norm N, and then give the Cauchy crite-
rion for p-statistically uniformly convergence in PN-space.

Definition 3.9. Let D be a compact subset of a PN-space (X, N, x). Let
(fn) be a sequence of functions on D. Then { f,(t)} is said to be u-Cauchy
with respect to the probabilistic norm N, if for every e > 0 and A € (0, 1),
there exists a M = M(g, A\,t) € N such that

p({n: Ny, - ra(€) > 1= A} = 1.

Definition 3.10. The sequence (f,) of bounded functions on the compact
subset D of the PN-space (X, N, ) is said to be p-statistically uniformly
Cauchy on D with respect to probabilistic norm N, if for every € > 0 and
A € (0,1), there exists a M = M(e,\) € N such that

(3.1) u({n : an(t)ffM(t)(g) >1-— )\}) =1.

To prove the Cauchy criterion for p-statistically uniformly convergence
in PN-space, we use the following lemma.

Lemma 3.11. Let D be a compact subset of a PN-space (X, N,x*). Let
(fn) be a sequence of functions on D. Then {f,(t)} is u-statistically con-
vergent with respect to the probabilistic norm N if and only if {f,(t)} is
u-Cauchy with respect to the probabilistic norm N.
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Proof.  Assume that {f,(t)} is p-statistically convergent to f(t) with
respect to the probabilistic norm N. Then, for every ¢ > 0 and A € (0,1),
we have
;L({n : an(t)—f(t)(e/Q) >1-— )\}) =1.

Now, we select an M = M (e, \,t) € N such that Ny, )—ru)(€/2) > 1— A
Then, by choosing v € (0, 1) such that (1 —A) % (1 —A) > (1 — ), we have

Npw-su®(€) = Npuy—s@+()-ran (/2 +€/2)
= Ny 0)-10)(€/2) * Npyy -0 (€/2)
SIS * (1=
>1—7
which yields that pu({n : Nt y—f,,)(€) > 1 —~}) = 1. Since € and v are
arbitrary, hence {f,(t)} is u-Cauchy.

Conversely, assume that {f,(¢)} is u-Cauchy with respect to the prob-
abilistic norm N. Then, for every ¢ > 0 and A € (0,1), there exists a
M = M(e, A\, t) € N such that

n({n: Ny, - rarny(€) > 1= A} = 1.

We claim that {f,(¢)} is p-statistically convergent to f(¢) with respect to
the probabilistic norm N. Let € > 0 and v € (0,1) be given. If possible,
suppose that

u{n: Ny, -y (€/2) > 1 =7}) = 0.
Now, we can select an M = M(e, \,t) € N such that
Nuv-sw(e/2) > 1=,
We choose A € (0,1) such that (1 —v)* (1 —-) > (1 — ). Then, we have

p{n s Ny, )= (€) > 1= A}) =0,

which contradicts our hypothesis. Thus, we have

p{n: Ny, -y () <1 —=7}) =0,

consequently {f,(t)} is u-statistically convergent to f(¢) with respect to
the probabilistic norm N.

Now, we are ready to give the Cauchy criterion for p-statistically uni-
formly convergence in PN-space.

Theorem 3.12. Let p be a measure with the APO condition, and (f,) be
a sequence of bounded functions on a compact subset D of the PN -space
(X, N,x). Then (f,) is p-statistically uniformly convergent with respect to
the probabilistic norm N on D if and only if (f,,) is u-statistically uniformly
Cauchy with respect to the probabilistic norm N on D.
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Proof.  Suppose that (f,) converges u-statistically uniformly to a func-
tion f with respect to probabilistic norm N on D. Then, for every € > 0
and v € (0,1), we have

p{n: Ny, w-ra(€/2) > 1=7}) =1,
for every t € D. We select an M = M (e, ) € N in such a way that

Npyy-(€/2) >1—7.

Choosing A € (0,1) such that (1 —~) (1 —~) > (1 —\), we have

u({n : an(t)—fM(t)(E) >1— )\}) =1.

Since ¢ is arbitrary, so (f,) is p-statistically uniformly Cauchy with respect
to probabilistic norm N on D.

Conversely, suppose that (fy,) is p-statistically uniformly Cauchy with
respect to the probabilistic norm N on D. Let t € D fixed. We have, from
(3.1) that for every € > 0 and A € (0,1), there exists a M = M(g,\) € N
such that

n({n: Ny, (€) > 1= A} =1L
Thus, {fn(t)} is u-Cauchy, and so by Lemma 3.11, {f,(¢)} converges p-
statistically to f(¢). Thus, f, Nf (u — stat) on D.
Now, we show that this convergence is uniform. Since p has the APO

condition, so by the relation (3.1), there exists a A € " with u(A) = 1 such
that

an(t)—fM(t)(e/Q) >1- )\7

forallm > M, n € A and A € (0,1). So, for every € > 0 and A € (0,1),
there exists A € I" with p(A) =1 and M = M(e, ) € N such that

(3:2) Nty (€) > 1= A,

for all n,m > M, n,m € A and for every t € D.

In (3.2), for fixed n and m — oo, we have, for every ¢ > 0 and A € (0,1),
there exists A € " with p(A) =1 and an M = M (e, \) € N such that

N (e) > 1= A

for all n > M, n € A and for every t € D. Hence f,Nf (u — density) on
D. Consequently, f,Nf (u— stat) on D.
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4. u-statistically conservative function sequences in PN-space

In 1999, Kolk [16] studied function sequences (f,,) that preserve conver-
gence (or conservative) on D C R. This definition of function sequence
preserving convergence was extended to the function sequence preserving
p-statistical convergence by Duman and Orhan [10] in 2004. In this sec-
tion, analogously, we describe the function sequences which preserves the
u-statistical convergence in PN-space. A sequential characterization of the
continuity of p-statistical limit functions of p-statistically uniformly con-
vergent function sequences has also been given.

First we introduce the following definition in the sense of probabilistic
norm /N.

Definition 4.1. Let D C (X, N,*) and let (f,) be a sequence of func-
tions on D. Then (f,) is called a function sequence preserving p-statistical
convergence with respect to a probabilistic norm N (or p-statistically con-
servative in PN-space) on D if the transformed sequence {fy(t)} con-
verges p-statistically with respect to the probabilistic norm N, for each
u-statistically convergent sequence t = (t,) with respect to the probabilis-
tic norm N from D. If (f,,) is p-statistically conservative in PN-space and
preserves the limits of all u-statistically convergent sequences with respect
to a probabilistic norm N from D, then (f,) is called p-statistically regular
with respect to the probabilistic norm N on D.

Hence, if (f,,) is conservative with respect to probabilistic norm N on D,
then (f,) is u-statistically conservative with respect to probabilistic norm
N on D, but the converse of this result is not true, which is shown by the
following example.

Example 4.2. Let A € I' such that N\ A is infinite and (A) = 1. Then,
we define f, : D — X by

fn<t>={(j; iy

for all t € D. Assume that (t,) is an arbitrary sequence from D such that
w— staty —limt, = L. Then, for every ¢ > 0 and X € (0,1), we have

u(fn Ny (e) < 1 A)) = p(N\ 4) =0.

Hence, p — staty — lim fp,(t,) = 0, so (fn) is p-statistically conservative
with respect to probabilistic norm N on D. But we observe that (f,) is
not conservative with respect to probabilistic norm N on D.
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In order to prove our next theorem, we use the following lemma. The
proof of the lemma is easy, so omitted.

Lemma 4.3. Let p be a measure with the APO condition. If (f") is a
countable collection of function sequences that are convergent in u-density
with respect to the probabilistic norm N, then there exists A : N — N such
that N —limy, f}, exists, for each fixed r and pw({A(k) : k€ N}) = 1.

Theorem 4.4. Let pu be a measure with the APO condition and let the
function sequence (fy) be defined on a compact set D of the PN-space
(X, N,x). Then (fy,) preserves u-statistical convergence with respect to a
probabilistic norm N on D if and only if (f,) is p-statistically uniformly
convergent with respect to the probabilistic norm N on D and converges
to a continuous function.

Proof. First, we suppose that (f,) preserves p-statistical convergence
with respect to probabilistic norm N on D. Now, for each z € D, we choose
the sequence (u,) = (z,z,...). Since p— staty —limu,, = x, so p— staty —
lim fy,(u,) exists, hence, for all z € D, we have pu—staty —lim fp,(z) = f(z).
We claim that, f is continuous on D with respect to the probabilistic norm
N. By the method of contradiction, we assume that f is not continuous
at a point £y € D. Then, there exists a sequence (v,) in D such that
N —limv, = xg, but N — lim f(v,) # f(zo). Since (f,) is p-statistically
point-wise convergent to f with respect to probabilistic norm N on D and
w has the APO condition, so we have f,Nf (1 — density) on D. Hence,
for each i, we have {f(v;) — f(v;) }NO (pu — density). Thus, it follows from
Lemma 4.3, that there exists A : N — N with pu({\(n) : n € N}) =1 such
that

N —lm[fym)(vi) — f(vi)] =0

for each i. Now, we can choose, by the diagonal process ([3], p. 192), an
index sequence (k) such that pu({k, : n € N}) =1 and

N — h}P[fkn (vn) - f(vn)] =0.
Now, we define (z;) by
xg, Jj =k, and jis odd,

xj =14 vy, j=k,andjiseven,
0, otherwise.
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Hence, ;Nzo (1 — density) and so we have p — staty —limz; = zo. But,
if j = ky, and j is odd, then N —lim fy, (z0) = f(xo) and if j = ky, and j is
even, then

N —lim fi,, (v2) = N = im[fy, (v) — F(va)] + N = lim f(0,) # f(0)-

Hence, {f;(z;)} is not convergent in p-density with respect to probabilistic
norm N, as the sequence { f;(x;)} has two distinct sub-sequences of positive
measure which converge to two different limit points. So, the sequence
{fj(x;)} doesn’t converge pu-statistically with respect to probabilistic norm
N, which contradicts the hypothesis. Hence, f must be continuous on D.
Now, it remains to prove that (f,,) is p-statistically uniformly convergent to
f with respect to probabilistic norm N on D. Suppose that (f,) does not
p-statistically uniformly converge to f with respect to probabilistic norm
N on D, which implies that (f,) is not p-density uniformly convergent to
f with respect to probabilistic norm N on D. Thus, for an arbitrary index
sequence (k) with u({k, : n € N}) = 1, there exists a number £ > 0 and
numbers x,, € D such that

(4.1) Ny @n)—fea)(€) <1 =7,
for v € (0,1). The sequence (x,) contains a convergent sub-sequence ()
in the PN-space (X, N, *) such that u — staty —limz,, = a (say). Con-
tinuity of f implies N — lim f(z,;) = f(c). So, there is an index jo such
that

Nf(xnj)—f(a)(g) >1— )\,

for A € (0,1) and j > jo. For the same j’s, we must have

(4.2) kanj (frnj)*f(a) (5) S 11—

Otherwise, if we have

(4.3) kanj (Inj)*f(a) (E) >1— )\,

then, by choosing v € (0, 1), such that (1 — ) (1 —A) > (1 —~), and by
using the relation given by (4.3), we have
Nfin, @ny) =1 @n;) () = N, (o)~ fla)+ 1 (@)~ fwny) (/2 €/2)
= N n)=1(@)(E/2) * Ny, )-1(0)(€/2)
>(1=XN)*(1-2X)
>1—7x
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which is a contradiction to the fact given by (4.1). Now, we define the
sequence v = (v;) by

a, 1=k, and i is odd,
Vi =1 Tn;, 1= k;nj and 7 is even,
0, otherwise.

Then, we get v;Na (u — density). Hence u — staty — limv; = a. But if
i = kn; and i is odd, then N —lim f, (a) = f(a) and if i = ky; and i
is even, then we have, by (4.2), N — lim S, (zn;) # f(a). Thus, {fi(z:)}
is not convergent in p-density with respect to probabilistic norm N, the
sequence { fi(z;)} has two distinct sub-sequences of positive measure which
converge to two distinct limit points. Consequently, the sequence { f;(x;)} is
not u-statistically convergent with respect to probabilistic norm N, which
is a contradiction to the hypothesis. Hence, (f,) must be p-statistically
uniformly convergent to f with respect to probabilistic norm N on D.

Conversely, suppose that (f,) converges p-statistically uniformly to f
with respect to the probabilistic norm N on D and f is continuous. Let
t = (t,) be a sequence which is u-statistically convergent with respect to
probabilistic norm N on D with u — staty — limt, = tg9. Since p has the
APO condition with ¢, Nty (i — density), hence there is an index sequence
(np) such that

N — lizr)ntnp =toand pu({n,:peN}) =1

Continuity of f at tg implies that
N — li]gnf(tnp) = f(to)-

Hence, f(t,)N f(to) (1 — density). Then, for every ¢ > 0 and v € (0, 1),
there exists Ay € I' with p(A;) =1 and a number n; € A; such that

Ni(t)—fto)(€/2) > 1 =1,

for all n > ny. Since p has the APO condition, so the p-statistical uniform
convergence with respect to probabilistic norm N is equivalent to the u-
density uniform convergence with respect to probabilistic norm N. Hence,
for every ¢ > 0 and v € (0, 1), there exists a Ay € I' with u(A43) =1 and a
number ng € As such that

Ny (@)= f(2)(€/2) > 1 =7,
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for every x € D and for all n > ny. Suppose that N := max{nj,ne} and
A := Aj; N Ay. Then, observe u(A) = 1. We choose A € (0,1) such that
(I =7)*(1—+)>1—A. Thus, by taking x = t,, we have

N ()~ £(10) (€) = N pot) 1 (tn) 45 (1) 1 (10) ()
= Nyt~ (20 (/2) % Nie)— 1 00) (¢/2)
>l =7)x(1-7)
>1-A
for all n > N and n € A. Hence, we have f,(t,)N f(to) (u — density), and
consequently, we have p — staty — lim f,,(¢,) = f(to). Hence the proof.
Following is the necessary and sufficient condition for the continuity of
p-statistical limit functions of function sequences in the PN-space (X, N, ),
which converge p-statistically uniformly on a compact subset D of a PN-
space (X, N, ).

Theorem 4.5. Let p be a measure with the APO condition and let the
function sequence (fy,) in the v-space (X, N, %) u-statistically uniform con-
verges to a function f with respect to the probabilistic norm N on a com-
pact subset D of (X, N,*). Then p — staty — lim function f is continuous
on D if and only if (fy,) is p-statistically conservative on D.

Now, we give a characterization of the u-statistical regularity of se-
quences of functions in PN-space. If (f,) is p-statistically regular on
D C (X, N,x), then we have p — staty — lim f,(x) = z, for all x € D.
Hence, by taking f(x) = z in Theorem 4.4, we immediately get the follow-
ing result.

Theorem 4.6. Let j1 be a measure with the APO condition and let (fy,) be
a sequence of functions on a compact subset D of the PN-space (X, N, ).
Then (f,,) is u-statistically regular with respect to a probabilistic norm N
on D if and only if (f,) p-statistically uniform converges to the function f
with respect to the probabilistic norm N on D, defined by f(x) = z, for all
zeD.

Conclusion

In this paper, we have introduced several notions like p-density point-
wise convergence, p-density uniform convergence, p-statistical point-wise
convergence, p-statistical uniform convergence, u-statistically conservative
function sequences etc for the sequence of functions defined on a compact
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subset D of a probabilistic normed space (X, N, %) and proved several use-
ful results for these notions. It has been observe that, if p is a measure
with the APO condition and (f,) is a sequence of functions defined on a
compact set D C (X, N, ), then (f,) preserves p-statistical convergence
with respect to the probabilistic norm N on D if and only if (f,) is p-
statistically uniformly convergent with respect to the probabilistic norm N
on D and converges to a continuous function. Since every classical norm
can induce a probabilistic norm, the results obtained here are more general
than the corresponding normed space results.
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