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1. B-algebras and generalized alternative algebras 11

Baric algebras play a central role in the theory of genetic algebras. They
were introduced by I. M. H. Etherington, in [2], in order to give an algebraic
treatment to Genetic Populations. Several classes of b-algebras have been
defined, such as: train, Bernstein, special triangular, etc.

Let U be an algebra over a field F' not necessarily associative, commu-
tative or finite dimensional. If w : U — F' is a nonzero homomorphism of
algebras, then the ordered pair (U,w) will be called a b-algebra over F' and
w its weight function or simply its weight. For = € U, w(x) is called weight
of x.

When B is a subalgebra of U and B ¢ kerw, then B is called a b-
subalgebra of (U,w). In this case, (B,wp) is a b-algebra, where wp = w|p :
B — F.

Let B be a b-subalgebra of (U,w). Then the subset bar(B) = {z €
B | w(z) = 0} is a two-side ideal of B of codimension 1, called bar ideal
of B. For all b € B with w(b) # 0, we have B = Fb & bar(B). If B is
a b-subalgebra of U and bar(B) is a two-side ideal of bar(U) (then by |2,
Proposition 1.1]), it is also a two-sided ideal of U), then B is called normal
b-subalgebra of (U,w). If I C bar(B) is a two-side ideal of B, then I is
called b-ideal of B.

Let (U,w) be a b-algebra. A subset B is called maximal (normal) b-
subalgebra of U if B is a (normal) b-subalgebra of U and there is no (nor-
mal) b-subalgebra C' of U such that B € C C U. A subset I is called
maximal b-ideal of U if I is a b-ideal of U, I # bar(U) and there is no
b-ideal J of U such that I C J C bar(U).

A nonzero element e € U is called an idempotent if e = e and nontriv-
1al idempotent if it is an idempotent different from multiplicative identity
element, if the algebra has this element. If (U,w) is a b-algebra and e € U
is an idempotent, then w(e) = 0 or w(e) = 1. When w(e) = 1, then e is
called idempotent of weight 1.

A b-algebra (U,w) is called b-simple if for all normal b-subalgebra B
of U, bar(B) = (0) or bar(B) = bar(U). When (U,w) has an idempotent
of weight 1, then (U,w) is b-simple if, and only if, its only b-ideals are (0)
and bar(U).

Let (U,w) be a b-algebra. We define the b-radical of U, denoted by
rad(U), as: rad(U) = (0), if (U,w) is b-simple, otherwise as rad(U) =
(N bar(B), where B runs over the maximal normal b-subalgebra of U. Of
course, rad(U) is a b-ideal of U.
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We say that U is b-semisimple if rad(U) = (0).

Let U be an algebra over a field F' not necessarily associative, commu-
tative and not necessarily having a unit. Let us denote the associator by
(z,y,2) = (zy)z — z(yz) and the commutator by [z,y] = zy — yz.

By [8] we have the following definition.

Let F be a field of characteristic different from 2 and 3. An algebra
U over F' is called a generalized alternative algebra II if the following two
identities are satisfied:

(11) (U).J?,y, Z) + (w’xa [ya Z]) = ’w(xay) Z) + (w7y7 z)m,
(12) (m,y,m) =0,

All associative or noncommutative Jordan algebra is a generalized al-
ternative algebra II and all generalized alternative algebra II is a power-
associative algebra [8].

An ideal K # 0 of a generalized alternative algebra II is called minimal
if for any ideal J such that 0 C J C K, then J =0or J = K.

Let U be a finite dimensional generalized alternative algebra II. We
define the nilradical of U, denoted by R(U), as the maximal nil ideal of
U. We say that U is simple when it contains no non-trivial ideals and the
multiplication operation is not uniformly zero and that U is semisimple if
R(U) =0.

Any finite dimensional simple generalized alternative algebra II is al-
ternative and any semisimple non-null generalized alternative algebra II is
uniquely expressible as a direct sum

U=W1®---oW,,

of simple ideals W; (1 <i <) [8].
Let U be a generalized alternative algebra II. If B and C' be subalgebras
of U, let us define

BC = vectp{bc|be B, ce C}

and B* inductively by

B! = B and B**' = BB + B*-1B? + ... + B2Bk~1 + BB*.
We obtain a descending chain
B'o>B?>...oBFD ...
of subalgebras of U. We call B nilpotent if there is some k for which B¥ = 0.
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For any subalgebra T of U one obtains a derived series of subalgebras
T(O) DT(l) DEEE DT(”) DEEE
, N2
by defining 7O =7, 76+ — (T(Z)) . We call T solvable if there is some
integer n for which 7™ = 0.
A finite dimensional generalized alternative algebra II is solvable if, and
only if, it is nilpotent.

Theorem 1.1. Let U be a generalized alternative algebra II of character-
istic different from 2 with a idempotent e. If U contains no ideal I # 0,
such that I? = 0, then U has a Peirce decomposition into a direct sum of
subspaces

U=Un & Ui ® Un @ Voo,

where U;j = {xy; € U 1 exyj = iz and zi5e = jay;} (i,5 = 0,1). The
multiplication table for the Peirce decomposition is:

(i) UijjUp =0, j # k;

(ii) UsjUj C Uy;

(iii) Uo1Uo1 < Uno;

(iv) UioUio € Uo1.
Proof: See [6].

Henceforth let U be a generalized alternative algebra II contains no
ideal I # 0, such that I? = 0.

Proposition 1.2. Let U be a finite dimensional generalized alternative
algebra II which is not a nilalgebra. Then U has a principal idempotent.

Proof: By [7, Proposition 3.3] U contains an idempotent e. If e is not
principal, then there is an idempotent u # 0 in Upg(e) such that f = e+ u
is an idempotent and Uj;i(f) contains properly Uji(e). In fact, cleary f
is an idempotent and for x;; € Uji(e) we have z11f = z11e = z11 and
similarly fz11 = 211, so that 11 € Uy1(f). That is, Ui1(e) C Upi(f). But
u € Ur1(f) and u ¢ Uqp(e). Hence dim Uyq(e) < dim Uy1(f) and this process
of increasing dimensions must terminate yielding a principal idempotent.
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Proposition 1.3. Let U be a finite dimensional generalized alternative
algebra II and e a principal idempotent of U. Then,

Uio @ Uo1 @ Uyo C R(U).

Proof: Since e is a principal idempotent of U, then the Peirce space Uy (e)
is a nilalgebra of U. This implies that in the Peirce decomposition of the
quotient algebra U/R(U), relative to the idempotent €, the Peirce space
(U / R(U))OO is a nilalgebra of U/R(U). Hence € is a principal idempotent
of U/R(U). So € is the unity element of the algebra U/R(U), by proof of [8,
Theorem 2.4], from which we obtain U/R(U) = (U/R(U)) " Consequently
Uio @ Uyt @ Uyg C R(U).

Theorem 1.4. Let U be a finite dimensional generalized alternative alge-
bra II and J a ideal of U. Then, R(J) = JNR(U).

Proof: Let us consider the canonical homomorphism ¢ : U — U/R(U),
an ideal J of U and K a nilideal of J. Then ¢(J) is an ideal of U/R(U)
semisimple and ¢(K) is a nilideal of ¢(J). This implies p(K) = 0 which
results in K C R(U). Hence R(J) C R(U). So R(J) € JN R(U). Conse-
quently, R(J) = JNR(U).

More details on the definitions and properties mentioned above will be
found in [5]-[8].

2. The b-radical

In this section we characterize the b-radical of a finite dimensional general-
ized alternative b-algebra II. The characterization of b-radical is fundamen-
tal for the demonstration of Wedderburn decomposition as can be seen in
[3], [4]. Let us observe that, if (U,w) is a generalized alternative b-algebra
II, then U has an idempotent of weight 1, by [1, Corollary 3.1].

Lemma 2.1. Let (U,w) be a finite dimensional generalized alternative b-
algebra II. Then every principal idempotent e of U has weight 1.

Proof: Let us consider U = Uy1®U190@Up1 ©Upp the Peirce decompositions
of U, relative to e. Since R(U) C bar(U), then Uig & Up1 & Ugo C bar(U),
by Proposition 1.3. Hence, if w(e) = 0, then Uy C bar(U) which yields
U = bar(U). This implies that w is the zero homomorphism, which is
absurd.
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Proposition 2.2. Let (U,w) be a finite dimensional generalized alterna-
tive b-algebra I Then R(U) = R(bar(U)).

Proof: Let us again observe that, R(U) is a nil ideal of U with R(U) C
bar(U). Thus R(U) C R(bar(U )) To prove the other inclusion, we will

show that R(bar(U)) is an ideal of U. In fact, if R(U) = bar(U) then

clearly R(bar(U)) C R(U). Now, if R(U) # bar(U), then bar(U) has a
principal idempotent f, by Proposition 1.2. Let us consider a nonzero or-
thogonal idempotent e to f, by Lemma 2.1. Certainly, e has weight 1 since
f is principal in bar(U). Let us take U = Fe @ bar(U) and the Peirce
decompositions of U and of bar(U), relative to f,

U= Uu(f) D Ulo(f) D U()l(f) @ UOO(f)

and

bar(U) = bar(U)11(f) ® bar(U)10(f) @ bar(U)o1(f) & bar(U)oeo(f)-

Then:
L Un(f) = bar(U)u(f)-

Clearly bar(U)11(f) C Uii(f). Otherwise for all x11 € Uy1(f), fx11 =
x11 which implies U1 (f) C bar(U)11(f).

2. Ul()(f) bar( ) (f) and U()l(f) = bar(U)gl(f).

Clearly bar(U)1o(f) C Uio(f) and for all z19 € Ujp(f), we have fxig =
x10 which implies Ujo(f) C bar(U)io(f). Similarly, we show Upi(f) =
bar(U)o1(f)-

3. Uoo(f) = Fe @ bar(U)oo(f).

Clearly Fe @ bar(U)oo(f) C Uoo(f). Now, for all zog € Upo(f), we have
xoo = e + x, where € bar(U). Since fxoop = xoof = 0, then fz =
flae+z)=0and zf = (e +z)f = 0. Thus Uy (f) C Fe @ bar(U)oo(f).
4. bar(U)1o(f) @ bar(U)o1 () @ bar(U)oo(f) € R(bar(U)).

This follows from the fact that f is a principal idempotent of bar(U).

Hence, for every element x € U and y € R(bar(U )), let us write x =
ae+ 11 + 210 + Zo1 + Too, where a € F and z;; € bar(U);;(f) (4,7 =0,1),
and y = y11 + Y10 + Yo1r + Yoo, with y;; € bar(U);(f) (4,5 = 0,1). Then
ry = aey + r11y + T10Y + To1Y + Tooy- Since r11y + T10Y + T01Y + Tooy €
R(bar(U)), eyi1 =0, eyio = 0, eyo1 € R(bar(U)) and ey € R(bar(U)),
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then ey € R(bar(U)) which yields UR(bar(U)) € R(bar(V)). Similarly,
we have R(bar(U))U C R(bar(U)). Thus R(bar(U)) is an ideal of U and
therefore R(bar(U)) C R(U). Consequently, R(U) = R(bar(U)).

Proposition 2.3. Let (U,w) be a finite dimensional generalized alterna-
tive b-algebra II. If R(U) = 0, then we have the following conditions:

(i) There is a principal idempotent f € bar(U) and an orthogonal idem-
potent e to f of weight 1 such that U = Fe @& Uy1(f);

(ii) There is a primitive idempotent e such that Fe is a simple ideal of
U;

(iii) rad(U) = 0.

Proof: (7). From the demonstration of the Proposition 2.2, there is a
principal idempotent f € bar(U) and an orthogonal idempotent e to f of
weight 1 such that U = Fe @ bar(U)11(f) @ bar(U)10(f) @ bar(U)o1(f) ®
bar(U)go(f) and bar(U)1o(f) @ bar(U)p1(f) @ bar(U)eo(f) C R(bar(U)).
This implies U = Fe & U1 (f).

(#1) From Proposition 2.2 again, we have Uy (f) = Fe®bar(U)oo(f) = Fe.
Thus Fe is a simple ideal of U.

(iii) If R(U) = 0, then U is a semisimple algebra and uniquely expressible
as a direct sum U = Wy @ --- @& W,. of nonzero simple ideals W; of U.
Let us consider elements e; in W; for (1 < i < r) such that e = Y|_; e;.
Let us observe that e¢; (1 < ¢ < r) are nonzero idempotents, of U, the
unity elements of Wj, respectively and e;e; = 0 for all 4,5 = 1,...,r. It is
easy to see that there is an only k£ (1 < k < r) such that w(e;) = 1 and
{e1,...,er} \ {ex} C bar(U). Without loss of generality, we can suppose
that w(e;) = 1. Hence W = Fe; @ barWj. Since barW; is an ideal of
W1, then barW; = 0. So U = Fey ® Wy & --- @ W,.. Next, let us observe
that Wy C bar(U) for every k (2 < k < r). This implies that bar(U) =
Wo @ -+ @ W,. Since W}, is a b-simple ideal of U, then U is b-semisimple
and therefore rad(U) = 0, by [5, Proposition 4.2].

Proposition 2.4. Let (U,w) be a finite dimensional generalized alterna-
tive b-algebra II. Then rad(U) C R(U).

Proof: Let e € U be an idempotent of weight 1 and B = Fe @ R(U).
Then B is a normal b-subalgebra of (U,w). Since the quotient algebra
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U/bar(B) = U/R(U) is semisimple, then we have rad(U/bar(B)) =0,
by Proposition 2.3. Hence rad(B) C rad(U) C bar(B) = R(U), by [5,
Proposition 3.4]. So rad(U) C R(U).

Proposition 2.5. Let (U,w) be a generalized alternative b-algebra II and
J a b-ideal of U, then J3 is a b-ideal of U. Moreover, if J is a minimal
b-ideal of U, then J®> =0 or J3 = J.

Proof: By, [8, Lemma 2.3], J? is b-ideal of U. Since .J is minimal, then
J3=0or J3=J.

Corollary 2.6. Let (U,w) be a generalized alternative b-algebra II. Then
(bar(U))3 is a b-ideal of U.

Proposition 2.7. Let (U,w) be a finite dimensional generalized alterna-
tive b-algebra II. Then

rad(U) C (bar(U)>3.

Proof: Let e € U be an idempotent of weight 1, U = Fe & bar(U)
and U = Uy1 @ Uig @ Up1 @ Uyg the Peirce decomposition of U, relative to
e. According with the properties of this decomposition, there are vectorial
subspaces Y;; C bar(U) NUj; (i, = 0,1) of U such that

3
bar(U) = (bar(U)) ® Y11 @ Yio D Yo1 @ Yoo

For each subspace Yj; (4,7 = 0, 1), let us take a basis Z;; = {214, - - -, Zn;;ij }
and let us define the subspaces

J(mU,U) = (bal"(U))g@ < (le U ZijgU Z%% U Zp1 U Zoo) \ {Zmijij} >,
for (i,j = 0,1) and 1 < m;; < nyj. Let us prove that J(mj,ij) is a
maximal b-ideal of U. In fact, let us be z € U and y € J(m;j,1j). There
are scalars «,ay,, € F' (1 < kyg < npg and kpg # mij; p,q = 0,1) and

3
elements a € bar(U) and b € (bar(U)) such that z = ae +a and y =
b+ Zp,q=0,1 (Zzﬁszl(imij) Okpqg kaqpq) . It follows that
TY = a(eb) +ab + Zp7q:071 (ZZZ;ZI(#mU) akpq azk:pqpq>

n
+ ZP,QZOJ (Zk;g:l(;émij) Paly, zkquQ) :
This implies that zy € J(m;j,4j). Simirlarly, we have that yz € J(m;;,4j).
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Thus J(m;j,4j) is a b-ideal of U. Moreover, as all J(m;;,ij) are of codi-
mension 1, then it is also maximal. Consequently,

3
wd() €N, ., Ty, i) = (bar(U)),
M5 tJ
where

Zmizij € Z11U Z10 U Zo1 U Zoo (1 < myj < myg; 4,5 = 0,1).

Proposition 2.8. Let (U,w) be a finite dimensional generalized alterna-
tive b-algebra I. Then
3
R(U) () (bar(V))” € rad(U).

Proof: Let us take the quotient b-algebra U/rad(U). By [5, Corollary 3.1],
we have rad(U / rad(U)) = 0 which implies U/rad(U) b-semisimple, by [5,
Theorem 4.2]. Hence bar (U Jrad(U )) is a direct sum of minimal ideals

Il@...@IS@JS_;,_lEB...@JT,

of U/rad(U), where I3 = I; (1 <i < s) and Jj3 =0(s+1<j<r). Let us
take the ideal of U/rad(U)

(bar(U/rad(U)))3 =L&...0.
Since
R((bar(U/rad(U)))3)
= R(U/rad(U)) N (bar(U/rad(U))>3,

by Theorem 1.4, and R(U/rad(U)) N1 (1 <i<s)areideals of U/rad(U),
then

R(U/rad(U)) (\1; = 0.

R((bar(U/rad(U))>3) _

It follows that
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Hence

0= R((bar(U/rad(U))>3> ~ R((bar(U))3> / rad (1)
which implies
R((bar(U))3> C rad(U7).
Consequently,

R (bar(@))” € rad(0).

From the propositions 2.4, 2.7 and 2.8, we can conclude the main result
of this paper.

Theorem 2.9. Let (U,w) be a finite dimensional generalized alternative
b-algebra II. Then

rad(U) = R(U)() ((bar(U)>3>.

Corollary 2.10. Let (U,w) be a finite dimensional generalized alternative

3
b-algebra II. Then bar(U) is nilpotent if, and only if, rad(U) = (bar(U )) .

Corollary 2.11. Let (U,w) be a finite dimensional generalized alternative
3
b-algebra IL. If bar(U) = (bar(U))", then rad(U) = R(U).
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