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1004 B. L. M. Ferreira

1. B-algebras and generalized alternative algebras II

Baric algebras play a central role in the theory of genetic algebras. They
were introduced by I. M. H. Etherington, in [2], in order to give an algebraic
treatment to Genetic Populations. Several classes of b-algebras have been
defined, such as: train, Bernstein, special triangular, etc.

Let U be an algebra over a field F not necessarily associative, commu-
tative or finite dimensional. If ω : U −→ F is a nonzero homomorphism of
algebras, then the ordered pair (U,ω) will be called a b-algebra over F and
ω its weight function or simply its weight. For x ∈ U, ω(x) is called weight
of x.

When B is a subalgebra of U and B 6⊂ kerω, then B is called a b-
subalgebra of (U,ω). In this case, (B,ωB) is a b-algebra, where ωB = ω|B :
B −→ F.

Let B be a b-subalgebra of (U,ω). Then the subset bar(B) = {x ∈
B | ω(x) = 0} is a two-side ideal of B of codimension 1, called bar ideal
of B. For all b ∈ B with ω(b) 6= 0, we have B = Fb ⊕ bar(B). If B is
a b-subalgebra of U and bar(B) is a two-side ideal of bar(U) (then by [2,
Proposition 1.1]), it is also a two-sided ideal of U), then B is called normal
b-subalgebra of (U,ω). If I ⊆ bar(B) is a two-side ideal of B, then I is
called b-ideal of B.

Let (U,ω) be a b-algebra. A subset B is called maximal (normal) b-
subalgebra of U if B is a (normal) b-subalgebra of U and there is no (nor-
mal) b-subalgebra C of U such that B ⊂ C ⊂ U. A subset I is called
maximal b-ideal of U if I is a b-ideal of U, I 6= bar(U) and there is no
b-ideal J of U such that I ⊂ J ⊂ bar(U).

A nonzero element e ∈ U is called an idempotent if e2 = e and nontriv-
ial idempotent if it is an idempotent different from multiplicative identity
element, if the algebra has this element. If (U,ω) is a b-algebra and e ∈ U
is an idempotent, then ω(e) = 0 or ω(e) = 1. When ω(e) = 1, then e is
called idempotent of weight 1.

A b-algebra (U,ω) is called b-simple if for all normal b-subalgebra B
of U, bar(B) = (0) or bar(B) = bar(U). When (U,ω) has an idempotent
of weight 1, then (U,ω) is b-simple if, and only if, its only b-ideals are (0)
and bar(U).

Let (U,ω) be a b-algebra. We define the b-radical of U, denoted by
rad(U), as: rad(U) = (0), if (U,ω) is b-simple, otherwise as rad(U) =T
bar(B), where B runs over the maximal normal b-subalgebra of U. Of

course, rad(U) is a b-ideal of U.
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The b-radical of generalized alternative b-algebras II 1005

We say that U is b-semisimple if rad(U) = (0).

Let U be an algebra over a field F not necessarily associative, commu-
tative and not necessarily having a unit. Let us denote the associator by
(x, y, z) = (xy)z − x(yz) and the commutator by [x, y] = xy − yx.

By [8] we have the following definition.
Let F be a field of characteristic different from 2 and 3. An algebra

U over F is called a generalized alternative algebra II if the following two
identities are satisfied:

(wx, y, z) + (w, x, [y, z]) = w(x, y, z) + (w, y, z)x,(1.1)

(x, y, x) = 0,(1.2)

All associative or noncommutative Jordan algebra is a generalized al-
ternative algebra II and all generalized alternative algebra II is a power-
associative algebra [8].

An ideal K 6= 0 of a generalized alternative algebra II is called minimal
if for any ideal J such that 0 ⊆ J ⊆ K, then J = 0 or J = K.

Let U be a finite dimensional generalized alternative algebra II. We
define the nilradical of U, denoted by R(U), as the maximal nil ideal of
U . We say that U is simple when it contains no non-trivial ideals and the
multiplication operation is not uniformly zero and that U is semisimple if
R(U) = 0.

Any finite dimensional simple generalized alternative algebra II is al-
ternative and any semisimple non-null generalized alternative algebra II is
uniquely expressible as a direct sum

U =W1 ⊕ · · ·⊕Wr,

of simple ideals Wi (1 ≤ i ≤ r) [8].
Let U be a generalized alternative algebra II. If B and C be subalgebras

of U , let us define

BC = vectF {bc | b ∈ B, c ∈ C}

and Bk inductively by

B1 = B and Bk+1 = BkB +Bk−1B2 + · · ·+B2Bk−1 +BBk.
We obtain a descending chain

B1 ⊃ B2 ⊃ · · · ⊃ Bk ⊃ · · ·
of subalgebras of U.We call B nilpotent if there is some k for which Bk = 0.
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1006 B. L. M. Ferreira

For any subalgebra T of U one obtains a derived series of subalgebras
T (0) ⊃ T (1) ⊃ · · · ⊃ T (n) ⊃ · · ·

by defining T (0) = T, T (i+1) =
³
T (i)

´2
. We call T solvable if there is some

integer n for which T (n) = 0.
A finite dimensional generalized alternative algebra II is solvable if, and

only if, it is nilpotent.

Theorem 1.1. Let U be a generalized alternative algebra II of character-
istic different from 2 with a idempotent e. If U contains no ideal I 6= 0,
such that I2 = 0, then U has a Peirce decomposition into a direct sum of
subspaces

U = U11 ⊕ U10 ⊕ U01 ⊕ U00,

where Uij = {xij ∈ U : exij = ixij and xije = jxij} (i, j = 0, 1). The
multiplication table for the Peirce decomposition is:

(i) UijUkl = 0, j 6= k;

(ii) UijUjl ⊆ Uil;

(iii) U01U01 ⊆ U10;

(iv) U10U10 ⊆ U01.

Proof: See [6]. 2

Henceforth let U be a generalized alternative algebra II contains no
ideal I 6= 0, such that I2 = 0.

Proposition 1.2. Let U be a finite dimensional generalized alternative
algebra II which is not a nilalgebra. Then U has a principal idempotent.

Proof: By [7, Proposition 3.3] U contains an idempotent e. If e is not
principal, then there is an idempotent u 6= 0 in U00(e) such that f = e+ u
is an idempotent and U11(f) contains properly U11(e). In fact, cleary f
is an idempotent and for x11 ∈ U11(e) we have x11f = x11e = x11 and
similarly fx11 = x11, so that x11 ∈ U11(f). That is, U11(e) ⊆ U11(f). But
u ∈ U11(f) and u /∈ U11(e). Hence dim U11(e) < dim U11(f) and this process
of increasing dimensions must terminate yielding a principal idempotent. 2
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The b-radical of generalized alternative b-algebras II 1007

Proposition 1.3. Let U be a finite dimensional generalized alternative
algebra II and e a principal idempotent of U. Then,

U10 ⊕ U01 ⊕ U00 ⊆ R(U).

Proof: Since e is a principal idempotent of U, then the Peirce space U00(e)
is a nilalgebra of U. This implies that in the Peirce decomposition of the
quotient algebra U/R(U), relative to the idempotent e, the Peirce space³
U/R(U)

´
00
is a nilalgebra of U/R(U). Hence e is a principal idempotent

of U/R(U). So e is the unity element of the algebra U/R(U), by proof of [8,

Theorem 2.4], from which we obtain U/R(U) =
³
U/R(U)

´
11
. Consequently

U10 ⊕ U01 ⊕ U00 ⊆ R(U). 2

Theorem 1.4. Let U be a finite dimensional generalized alternative alge-
bra II and J a ideal of U . Then, R(J) = J ∩R(U).

Proof: Let us consider the canonical homomorphism ϕ : U → U/R(U),
an ideal J of U and K a nilideal of J. Then ϕ(J) is an ideal of U/R(U)
semisimple and ϕ(K) is a nilideal of ϕ(J). This implies ϕ(K) = 0 which
results in K ⊆ R(U). Hence R(J) ⊆ R(U). So R(J) ⊆ J ∩ R(U). Conse-
quently, R(J) = J ∩R(U). 2

More details on the definitions and properties mentioned above will be
found in [5]-[8].

2. The b-radical

In this section we characterize the b-radical of a finite dimensional general-
ized alternative b-algebra II. The characterization of b-radical is fundamen-
tal for the demonstration of Wedderburn decomposition as can be seen in
[3], [4]. Let us observe that, if (U,ω) is a generalized alternative b-algebra
II, then U has an idempotent of weight 1, by [1, Corollary 3.1].

Lemma 2.1. Let (U,ω) be a finite dimensional generalized alternative b-
algebra II. Then every principal idempotent e of U has weight 1.

Proof: Let us consider U = U11⊕U10⊕U01⊕U00 the Peirce decompositions
of U , relative to e. Since R(U) ⊆ bar(U), then U10 ⊕ U01 ⊕ U00 ⊆ bar(U),
by Proposition 1.3. Hence, if ω(e) = 0, then U11 ⊆ bar(U) which yields
U = bar(U). This implies that ω is the zero homomorphism, which is
absurd. 2
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1008 B. L. M. Ferreira

Proposition 2.2. Let (U,ω) be a finite dimensional generalized alterna-

tive b-algebra II. Then R(U) = R
³
bar(U)

´
.

Proof: Let us again observe that, R(U) is a nil ideal of U with R(U) ⊆
bar(U). Thus R(U) ⊆ R

³
bar(U)

´
. To prove the other inclusion, we will

show that R
³
bar(U)

´
is an ideal of U. In fact, if R(U) = bar(U) then

clearly R
³
bar(U)

´
⊆ R(U). Now, if R(U) 6= bar(U), then bar(U) has a

principal idempotent f, by Proposition 1.2. Let us consider a nonzero or-
thogonal idempotent e to f, by Lemma 2.1. Certainly, e has weight 1 since
f is principal in bar(U). Let us take U = Fe ⊕ bar(U) and the Peirce
decompositions of U and of bar(U), relative to f,

U = U11(f)⊕ U10(f)⊕ U01(f)⊕ U00(f)

and

bar(U) = bar(U)11(f)⊕ bar(U)10(f)⊕ bar(U)01(f)⊕ bar(U)00(f).

Then:
1. U11(f) = bar(U)11(f).

Clearly bar(U)11(f) ⊆ U11(f). Otherwise for all x11 ∈ U11(f), fx11 =
x11 which implies U11(f) ⊆ bar(U)11(f).
2. U10(f) = bar(U)10(f) and U01(f) = bar(U)01(f).
Clearly bar(U)10(f) ⊆ U10(f) and for all x10 ∈ U10(f), we have fx10 =
x10 which implies U10(f) ⊆ bar(U)10(f). Similarly, we show U01(f) =
bar(U)01(f).
3. U00(f) = Fe⊕ bar(U)00(f).

Clearly Fe⊕ bar(U)00(f) ⊆ U00(f). Now, for all x00 ∈ U00(f), we have
x00 = αe + x, where x ∈ bar(U). Since fx00 = x00f = 0, then fx =
f(αe+ x) = 0 and xf = (αe+ x)f = 0. Thus U00(f) ⊆ Fe⊕ bar(U)00(f).
4. bar(U)10(f)⊕ bar(U)01(f)⊕ bar(U)00(f) ⊆ R

³
bar(U)

´
.

This follows from the fact that f is a principal idempotent of bar(U).

Hence, for every element x ∈ U and y ∈ R
³
bar(U)

´
, let us write x =

αe+ x11+x10+ x01+ x00, where α ∈ F and xij ∈ bar(U)ij(f) (i, j = 0, 1),
and y = y11 + y10 + y01 + y00, with yij ∈ bar(U)ij(f) (i, j = 0, 1). Then
xy = αey + x11y + x10y + x01y + x00y. Since x11y + x10y + x01y + x00y ∈
R
³
bar(U)

´
, ey11 = 0, ey10 = 0, ey01 ∈ R

³
bar(U)

´
and ey00 ∈ R

³
bar(U)

´
,
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The b-radical of generalized alternative b-algebras II 1009

then ey ∈ R
³
bar(U)

´
which yields UR

³
bar(U)

´
⊆ R

³
bar(U)

´
. Similarly,

we have R
³
bar(U)

´
U ⊆ R

³
bar(U)

´
. Thus R

³
bar(U)

´
is an ideal of U and

therefore R
³
bar(U)

´
⊆ R(U). Consequently, R(U) = R

³
bar(U)

´
. 2

Proposition 2.3. Let (U,ω) be a finite dimensional generalized alterna-
tive b-algebra II. If R(U) = 0, then we have the following conditions:

(i) There is a principal idempotent f ∈ bar(U) and an orthogonal idem-
potent e to f of weight 1 such that U = Fe⊕ U11(f);

(ii) There is a primitive idempotent e such that Fe is a simple ideal of
U ;

(iii) rad(U) = 0.

Proof: (i). From the demonstration of the Proposition 2.2, there is a
principal idempotent f ∈ bar(U) and an orthogonal idempotent e to f of
weight 1 such that U = Fe ⊕ bar(U)11(f) ⊕ bar(U)10(f) ⊕ bar(U)01(f) ⊕
bar(U)00(f) and bar(U)10(f) ⊕ bar(U)01(f) ⊕ bar(U)00(f) ⊂ R

³
bar(U)

´
.

This implies U = Fe⊕ U11(f).
(ii) From Proposition 2.2 again, we have U00(f) = Fe⊕bar(U)00(f) = Fe.
Thus Fe is a simple ideal of U .
(iii) If R(U) = 0, then U is a semisimple algebra and uniquely expressible
as a direct sum U = W1 ⊕ · · · ⊕ Wr of nonzero simple ideals Wi of U.
Let us consider elements ei in Wi for (1 ≤ i ≤ r) such that e =

Pr
i=1 ei.

Let us observe that ei (1 ≤ i ≤ r) are nonzero idempotents, of U , the
unity elements of Wi, respectively and eiej = 0 for all i, j = 1, . . . , r. It is
easy to see that there is an only k (1 ≤ k ≤ r) such that ω(ek) = 1 and
{e1, . . . , er} \ {ek} ⊆ bar(U). Without loss of generality, we can suppose
that ω(e1) = 1. Hence W1 = Fe1 ⊕ barW1. Since barW1 is an ideal of
W1, then barW1 = 0. So U = Fe1 ⊕W2 ⊕ · · · ⊕Wr. Next, let us observe
that Wk ⊆ bar(U) for every k (2 ≤ k ≤ r). This implies that bar(U) =
W2 ⊕ · · · ⊕Wr. Since Wk is a b-simple ideal of U, then U is b-semisimple
and therefore rad(U) = 0, by [5, Proposition 4.2]. 2

Proposition 2.4. Let (U,ω) be a finite dimensional generalized alterna-
tive b-algebra II. Then rad(U) ⊆ R(U).

Proof: Let e ∈ U be an idempotent of weight 1 and B = Fe ⊕ R(U).
Then B is a normal b-subalgebra of (U,ω). Since the quotient algebra
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1010 B. L. M. Ferreira

U/bar(B) = U/R(U) is semisimple, then we have rad
³
U/bar(B)

´
= 0,

by Proposition 2.3. Hence rad(B) ⊆ rad(U) ⊆ bar(B) = R(U), by [5,
Proposition 3.4]. So rad(U) ⊆ R(U). 2

Proposition 2.5. Let (U,ω) be a generalized alternative b-algebra II and
J a b-ideal of U , then J3 is a b-ideal of U . Moreover, if J is a minimal
b-ideal of U , then J3 = 0 or J3 = J .

Proof: By, [8, Lemma 2.3], J3 is b-ideal of U . Since J is minimal, then
J3 = 0 or J3 = J . 2

Corollary 2.6. Let (U,ω) be a generalized alternative b-algebra II. Then
(bar(U))3 is a b-ideal of U .

Proposition 2.7. Let (U,ω) be a finite dimensional generalized alterna-
tive b-algebra II. Then

rad(U) ⊆
³
bar(U)

´3
.

Proof: Let e ∈ U be an idempotent of weight 1, U = Fe ⊕ bar(U)
and U = U11 ⊕ U10 ⊕ U01 ⊕ U00 the Peirce decomposition of U , relative to
e. According with the properties of this decomposition, there are vectorial
subspaces Yij ⊆ bar(U) ∩ Uij (i, j = 0, 1) of U such that

bar(U) =
³
bar(U)

´3
⊕ Y11 ⊕ Y10 ⊕ Y01 ⊕ Y00.

For each subspace Yij (i, j = 0, 1), let us take a basis Zij = {z1ij , . . . , znij ij}
and let us define the subspaces

J(mij , ij) =
³
bar(U)

´3
⊕ < (Z11 ∪ Z10 ∪ Z 1

2
1
2
∪ Z01 ∪ Z00) \ {zmijij} >,

for (i, j = 0, 1) and 1 ≤ mij ≤ nij . Let us prove that J(mij , ij) is a
maximal b-ideal of U. In fact, let us be x ∈ U and y ∈ J(mij , ij). There
are scalars α,αkpq ∈ F (1 ≤ kpq ≤ npq and kpq 6= mij ; p, q = 0, 1) and

elements a ∈ bar(U) and b ∈
³
bar(U)

´3
such that x = αe + a and y =

b+
P

p,q=0,1

³Pnpq
kpq=1(6=mij)

αkpqzkpqpq
´
. It follows that

xy = α(eb) + ab+
P

p,q=0,1

³Pnpq
kpq=1(6=mij)

αkpqazkpqpq
´

+
P

p,q=0,1

³Pnpq
kpq=1(6=mij)

pααkpqzkpqpq
´
.

This implies that xy ∈ J(mij , ij). Simirlarly, we have that yx ∈ J(mij , ij).
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The b-radical of generalized alternative b-algebras II 1011

Thus J(mij , ij) is a b-ideal of U. Moreover, as all J(mij , ij) are of codi-
mension 1, then it is also maximal. Consequently,

rad(U) ⊆ Tzmijij
J(mij , ij) =

³
bar(U)

´3
,

where

zmijij ∈ Z11 ∪ Z10 ∪ Z01 ∪ Z00 (1 ≤ mij ≤ nij ; i, j = 0, 1).
2

Proposition 2.8. Let (U,ω) be a finite dimensional generalized alterna-
tive b-algebra I. Then

R(U)
\³

bar(U)
´3
⊆ rad(U).

Proof: Let us take the quotient b-algebra U/rad(U). By [5, Corollary 3.1],

we have rad
³
U/rad(U)

´
= 0 which implies U/rad(U) b-semisimple, by [5,

Theorem 4.2]. Hence bar
³
U/rad(U)

´
is a direct sum of minimal ideals

I1 ⊕ . . .⊕ Is ⊕ Js+1 ⊕ . . .⊕ Jr,

of U/rad(U), where I3i = Ii (1 ≤ i ≤ s) and J3j = 0 (s+ 1 ≤ j ≤ r). Let us
take the ideal of U/rad(U)µ

bar
³
U/rad(U)

´¶3
= I1 ⊕ . . .⊕ Is.

Since

R

µµ
bar

³
U/rad(U)

´¶3¶
= R

³
U/rad(U)

´\µ
bar

³
U/rad(U)

´¶3
,

by Theorem 1.4, and R
³
U/rad(U)

´T
Ii (1 ≤ i ≤ s) are ideals of U/rad(U),

then

R
³
U/rad(U)

´\
Ii = 0.

It follows that

R

µµ
bar

³
U/rad(U)

´¶3¶
= 0.
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