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678 El H. Lakhel

1. Introduction

For the practical applications in the areas such as biology, medicine, physics,
finance, electrical engineering, telecommunication networks, and so on, the
theory of stochastic evolution equations has attracted research’s great in-
terest. For more details, one can see Da Prato and Zabczyk [5], and Ren
and Sun [17] and the references therein. In many areas of science, there
has been an increasing interest in the investigation of the systems incor-
porating memory or aftereffect, i.e., there is the effect of delay on state
equations. Therefore, there is a real need to discuss stochastic evolution
systems with delay. In many mathematical models the claims often display
long-range memories, possibly due to extreme weather, natural disasters, in
some cases, many stochastic dynamical systems depend not only on present
and past states, but also contain the derivatives with delays. Neutral func-
tional differential equations are often used to describe such systems.

Recently, stochastic functional differential equations driven by frac-
tional Brownian motion have attracted the interest of many researchers.
One can see [3, 4, 6, 7, 8, 9, 10] and the references therein. Very recently,
Lakhel and Mckibeen have discussed the existence of mild solutions for a
class of stochastic fractional stochastic differenntial equations driven by a
fractional Brownian motion, in Hilbert space, by using the Wiener integral
[11]. However, the problem of studing the existence of solution of neutral
stochastic differential equations driven by Rosenblatt process is more com-
plicated and still remains open for a while. Hence, techniques and methods
for analysing the neutral stochastic fractional stochastic differenntial equa-
tions driven by Rosenblatt process should be developed and explored.

On the other hand, the very large utilization of the fractional Brownian
motion in practice are due to its self-similarity, stationarity of increments
and long-range dependence; one prefers in general fBm before other pro-
cesses because it is Gaussian and the calculus for it is easier; but in concrete
situations when the gaussianity is not plausible for the model, one can use
for example the Rosenblatt process. Although defined during the 60s and
70s [19, 21] due to their appearance in the Non-Central Limit Theorem, the
systematic analysis of Rosenblatt processes has only been developed dur-
ing the last ten years, motivated by their nice properties (self-similarity,
stationarity of the increments, long-range dependence). Since they are
non-Gaussian and self-similar with stationary increments, the Rosenblatt
processes can also be an input in models where self-similarity is observed
in empirical data which appears to be non-Gaussian. There exists a consis-
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Neutral stochastic functional differential evolution equations... 679

tent literature that focuses on different theoreticalaspects of the Rosenblatt
processes. Let us recall some of these works. For example, the rate of con-
vergence to the Rosenblatt process in the Non Central Limit Theorem has
been given by Leonenko and Ahn [12]. The analysis of the Rosenblatt pro-
cess has been investigated by Tudor [22]. The distribution of the Rosenblatt
process has been given in [13]. An existence and uniqueness result of mild
solutions for a class of neutral stochastic differential equation with infi-
nite delay driven by Rosenblatt process in Hilbert space has been recently
established in Sakthivel et al. [18].

Motivated by the above works, this paper is concerned with the exis-
tence and uniqueness of mild solutions for a class of time-dependent neutral
functional stochastic differential equations driven by non-Gaussian noises,
described in the form:

½
d[x(t) + g(t, x(t− r(t)))] = [A(t)x(t) + f(t, x(t− ρ(t)))]dt+ σ(t)dZH(t), 0 ≤ t ≤ T,
x(t) = ϕ(t), −τ ≤ t ≤ 0,

(1.1)

in a real Hilbert space X with inner product < ., . > and norm k.k, where
{A(t), t ∈ [0, T ]} is a family of linear closed operators from a space X into
X that generates an evolution system of operators {U(t, s), 0 ≤ s ≤ t ≤
T}. ZH is a Rosenblatt process on a real and separable Hilbert space Y ,
r, ρ : [0,+∞) → [0, τ ] (τ > 0) are continuous and f, g : [0,+∞) ×X →
X, σ : [0,+∞) → L02(Y,X), are appropriate functions. Here L02(Y,X)
denotes the space of allQ-Hilbert-Schmidt operators from Y into X (see
section 2 below).

On the other hand, to the best of our knowledge, there is no paper which
investigates the study of time-dependent neutral stochastic functional dif-
ferential equations with delays driven by Rosenblatt process. Thus, we will
make the first attempt to study such problem in this paper.

We organize our paper as follows. Section 2, recapitulate some nota-
tions, basic concepts, and basic results about Rosenblatt process, Wiener
integral with respect to it over Hilbert spaces and we recall some prelim-
inary results about evolution operator. We need to prove a new technical
lemma for the L2−estimate of stochastic convolution integral. Section 3,
gives sufficient conditions to prove the existence and uniqueness for the
problem (1.1). In Section 4 we give an example to illustrate the efficiency
of the obtained result.
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680 El H. Lakhel

2. Preliminaries

In this section we recall some basic results about evolution family, and we
introduce the Rosenblatt process as well as the Wiener integral with re-
spect to it. We also establish some important results which will be needed
throughout the paper.

2.1. Evolution families

In this subsection we introduce the notion of evolution family.
A set {U(t, s) : 0 ≤ s ≤ t ≤ T} of bounded linear operators on a Hilbert

space X is called an evolution family if

(a) U(t, s)U(s, r) = U(t, r), U(s, s) = I if r ≤ s ≤ t,

(b) (t, s)→ U(t, s)x is strongly continuous for t > s.

Let {A(t), t ∈ [0, T ]} be a family of closed densely defined linear un-
bounded operators on the Hilbert space X and with domain D(A(t)) inde-
pendent of t, satisfying the following conditions introduced by [1].

There exist constants λ0 ≥ 0, θ ∈ (π2 , π), L, K ≥ 0, and µ, ν ∈ (0, 1]
with µ+ ν > 1 such that

Σθ ∪ {0} ⊂ ρ(A(t)− λ0), kR(λ,A(t)− λ0)k ≤
K

1 + |λ|(2.1)

and

k(A(t)−λ0)R(λ,A(t)−λ0)
h
R(λ0, A(t))−R(λ0, A(s))

i
k ≤ L|t−s|µ|λ|−ν ,(2.2)

for t, s ∈ R, λ ∈ Σθ where Σθ :=
n
λ ∈ C− {0} : | arg λ| ≤ θ

o
.

It is well known, that this assumption implies that there exists a unique
evolution family {U(t, s) : 0 ≤ s ≤ t ≤ T} on X such that (t, s)→ U(t, s) ∈
L(X) is continuous for t > s, U(·, s) ∈ C1((s,∞), L(X)), ∂tU(t, s) =
A(t)U(t, s), and

kA(t)kU(t, s)k ≤ C(t− s)−k(2.3)

for 0 < t− s ≤ 1, k = 0, 1, 0 ≤ α < µ, x ∈ D((λ0−A(s))α), and a constant
C depending only on the constants in (2.1)-(2.2). Moreover, ∂+s U(t, s)x =
−U(t, s)A(s)x for t > s and x ∈ D(A(s)) with A(s)x ∈ D(A(s)). We
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say that A(·) generates {U(t, s) : 0 ≤ s ≤ t ≤ T}. Note that U(t, s) is
exponentially bounded by (2.3) with k = 0.

If {A(t), t ∈ [0, T ]} is a second order differential operator A, that is
A(t) = A for each t ∈ [0, T ], then A generates a C0−semigroup {eAt, t ∈
[0, T ]}.

For additional details on evolution system and their properties, we refer
the reader to [15].

2.2. Rosenblatt process

In this section, we collect some definitions and lemmas on Wiener integrals
with respect to an infinite dimensional Rosenblatt process and we recall
some basic results about analytical semi-groups and fractional powers of
their infinitesimal generators, which will be used throughout the whole of
this paper.

For details of this section, we refer the reader to [22, 15] and references
therein.

Let (Ω,F ,P) be a complete probability space. Selfsimilar processes are
invariant in distribution under suitable scaling. They are of considerable
interest in practice since aspects of the selfsimilarity appear in different phe-
nomena like telecommunications, turbulence, hydrology or economics. A
self-similar processes can be defined as limits that appear in the so-called
Non-Central Limit Theorem (see [21]). We briefly recall the Rosenblatt
process as well as the Wiener integral with respect to it.

Consider (ζn)n∈Z a stationary Gaussian sequence with mean zero and
variance 1 which exhibits long range dependence in the sense that the cor-
relation function satisfies

r(n) = (ζ0ζn) = n
2H−2
k L(n),

with H ∈ (12 , 1) and L is a slowly varying function at infinity. Let us recall
the notion of Hermite rank. Denote by Hj(x) the Hermite polynomial of

degree j given by Hj = (−1)jex
2

2
dj

dxj
e
−x2
2 and let g be a function on R

such that [g(ζ0)] = 0 and [g(ζ0)
2] < ∞. Assume that g has the following

expansion in Hermite polynomials
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682 El H. Lakhel

g(x) =
X
j≥0

cjHj(x),

where cj =
1
j!(g(ζ0Hj(ζ0))). The Hermite rank of g is defined by

k = min{j|cj 6= 0}.

Since [g(ζ0)] = 0, we have k ≥ 1. The following family of stochastic
processes

1

nH

[nt]X
j=1

g(ζj)

converges as n −→ ∞, in the sense of finite dimensional distributions, to
the selfsimilar stochastic process with stationary increments

Zk
H(t) = c(H, k)

Z
Rk

⎛⎝Z t

0

kY
j=1

(s− yj)
−( 1

2
+ 1−H

k
)

+ ds

⎞⎠ dB(y1)...dB(yk),(2.4)

where x+ = max(x, 0). The above integral is a Wiener-Itô multiple integral
of order k with respect to the standard Brownian motion (B(y))y∈R and
the constant c(H,k) is a normalizing constant that ensures (Zk

H(1))
2 = 1.

The process (Zk
H(t))t≥0 is called the Hermite process. When k = 1 the

process given by (2.4) is nothing else that the fractional Brownian motion
(fBm) with Hurst parameter H ∈ (12 , 1). For k = 2 the process is not Gaus-
sian. If k = 2 then the process (2.4) is known as the Rosenblatt process.
It was introduced by Rosenblatt in [19] and was given its name by Taqqu
in [20]. The fractional Brownian motion is of course the most studied pro-
cess in the class of Hermite processes due to its significant importance in
modelling. A stochastic calculus with respect to it has been intensively
developed in the last decade. The Rosenblatt process is, after fBm, the
most well known Hermite process.

We also recall the following properties of the Rorenblatt process:

• The process Zk
H is H-selfsimilar in the sense that for any c > 0,

(Zk
H(ct)) =

(d) (cHZk
H(t)),(2.5)
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where ” =(d) ” means equivalence of all finite dimensional distributions. It
has stationary increments and all moments are finite.

• From the stationarity of increments and the self-similarity, it follows
that, for any p ≥ 1

|ZH(t)− ZH(s)|p ≤ |(ZH(1))|p|t− s|pH .

As a consequence the Rosenblatt process has Hölder continuous paths of
order γ with 0 < γ < H.

Self-similarity and long-range dependence make this process a useful
driving noise in models arising in physics, telecommunication networks,
finance and other fields. Consider a time interval [0, T ] with arbitrary
fixed horizon T and let {ZH(t), t ∈ [0, T ]} the one-dimensional Rosenblatt
process with parameter H ∈ (1/2, 1). By Tudor [22], it is well known that
ZH has the following integral representation:

ZH(t) = d(H)

Z t

0

Z t

0

"Z t

y1∨y2

∂KH0

∂u
(u, y1)

∂KH0

∂u
(u, y2)du

#
dB(y1)dB(y2),(2.6)

where B = {B(t) : t ∈ [0, T ]} is a Wiener process, H 0 = H+1
2 and KH(t, s)

is the kernel given by

KH(t, s) = cHs
1
2
−H

Z t

s
(u− s)H−

3
2uH−

1
2du,

for t > s, where cH =
r

H(2H−1)
β(2−2H,H− 1

2
)
and β(, ) denotes the Beta function.

We put KH(t, s) = 0 if t ≤ s and d(H) = 1
H+1

q
H

2(2H−1) is a normalizing
constant.

The covariance of the Rosenblatt process {ZH(t), t ∈ [0, T ]} satisfies,
for every s, t ≥ 0,

RH(s, t) := (ZH(t)ZH(s)) =
1

2
(t2H + s2H − |t− s|2H).

The basic observation is the fact that the covariance structure of the
Rosenblatt process is similar to the one of the fractional Brownian motion
and this allows the use of the same classes of deterministic integrands as in
the fractional Brownian motion case whose properties are known.
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684 El H. Lakhel

Now, we introduce Wiener integrals with respect to the Rosenblatt pro-
cess. We refer to [22] for additional details on the Rosenblatt process .

By formula (2.6) we can write
ZH(t) =

R t
0

R t
0 I(1[0,t])(y1, y2)dB(y1)dB(y2),

where by I we denote the mapping on the set of functions f : [0, T ] −→ R
to the set of functions g : [0, T ]2 −→ R

I(f)(y1, y2) = d(H)

Z T

y1∨y2
f(u)

∂KH0

∂u
(u, y1)

∂KH0

∂u
(u, y2)du.

Let us denote by E the class of elementary functions on R of the form

f(.) =
nX

j=1

aj1(tj ,tj+1](.), 0 ≤ tj < tj+1 ≤ T, aj ∈ R, i = 1, ..., n.

For f ∈ E as above, it is natural to define its Wiener integral with
respect to the Rosenblatt process ZH by

Z T

0
f(s)dZH(s) :=

nX
j=1

aj [ZH(tj+1)− ZH(tj)] =

Z T

0

Z T

0
I(f)(y1, y2)dB(y1)dB(y2).

(2.7)
Let H be the set of functions f such that

H =

(
f : [0, T ] −→ R : kfkH :=

Z T

0

Z T

0
(I(f)(y1, y2))

2 dy1dy2 <∞
)
.

It hold that (see Maejima and Tudor [14])

kfkH = H(2H − 1)
Z T

0

Z T

0
f(u)f(v)|u− v|2H−2dudv,

and, the mapping

f −→
Z T

0
f(u)dZH(u)(2.8)

provides an isometry from E to L2(Ω). On the other hand, it has been
proved in [16] that the set of elementary functions E is dense in H. As a
consequence the mapping (2.8) can be extended to an isometry from H to
L2(Ω). We call this extension as the Wiener integral of f ∈ H with respect
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to ZH .

Let us consider the operator K∗
H from E to L2([0, T ]) defined by

(K∗
Hϕ)(y1, y2) =

Z T

y1∨y2
ϕ(r)

∂K

∂r
(r, y1, y2)dr,

where K(., ., .) is the kernel of Rosenblatt process in representation (2.6)

K(r, y1, y2) = 1[0,t](y1)1[0,t](y2)

Z t

y1∨y2

∂KH0

∂u
(u, y1)

∂KH0

∂u
(u, y2)du.

We refer to [22] for the proof of the fact that K∗
H is an isometry between

H and L2([0, T ]). It follows from [22] that H contains not only functions
but its elements could be also distributions. In order to obtain a space of
functions contained in H, we consider the linear space |H| generated by the
measurable functions ψ such that

kψk2|H| := αH

Z T

0

Z T

0
|ψ(s)||ψ(t)||s− t|2H−2dsdt <∞,

where αH = H(2H − 1). The space |H| is a Banach space with the norm
kψk|H| and we have the following inclusions (see [22]).

L2([0, T ]) ⊆ L1/H([0, T ]) ⊆ |H| ⊆ H,

and for any ψ ∈ L2([0, T ]), we have

kψk2|H| ≤ 2HT 2H−1
Z T

0
|ψ(s)|2ds.

Let X and Y be two real, separable Hilbert spaces and let L(Y,X)
be the space of bounded linear operator from Y to X. For the sake of
convenience, we shall use the same notation to denote the norms in X,Y
and L(Y,X). Let Q ∈ L(Y, Y ) be an operator defined by Qen = λnen
with finite trace trQ =

P∞
n=1 λn < ∞. where λn ≥ 0 (n = 1, 2...) are

non-negative real numbers and {en} (n = 1, 2...) is a complete orthonormal
basis in Y . We define the infinite dimensional Q−Rosenblatt process on Y
as

ZH(t) = ZQ(t) =
∞X
n=1

p
λnenzn(t),(2.9)
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686 El H. Lakhel

where (zn)n≥0 is a family of real independent Rosenblatt process.
Note that the series (2.9) is convergent in L2(Ω) for every t ∈ [0, T ],

since

kZQ(t)k2 =
∞X
n=1

λn(zn(t))
2 = t2H

∞X
n=1

λn <∞.

Note also that ZQ has covariance function in the sense that

EhZQ(t), xihZQ(s), yi = R(s, t)hQ(x), yi for all x, y ∈ Y and t, s ∈ [0, T ].

In order to define Wiener integrals with respect to the Q-Rosenblatt
process, we introduce the space L02 := L02(Y,X) of all Q-Hilbert-Schmidt
operators ψ : Y → X. We recall that ψ ∈ L(Y,X) is called a Q-Hilbert-
Schmidt operator, if

kψk2L02 :=
∞X
n=1

k
p
λnψenk2 <∞,

and that the space L02 equipped with the inner product
hϕ,ψiL02 =

P∞
n=1hϕen, ψeni is a separable Hilbert space.

Now, let φ(s); s ∈ [0, T ] be a function with values in L02(Y,X), such
that

P∞
n=1 kK∗φQ

1
2 enk2L02 < ∞. The Wiener integral of φ with respect to

ZQ is defined by

Z t

0
φ(s)dZQ(s) =

∞X
n=1

Z t

0

p
λnφ(s)endzn(s)

=
∞X
n=1

Z t

0

Z t

0

p
λnK

∗
H(φen)(y1, y2)dB(y1)dB(y2).(2.10)

Now, we end this subsection by stating the following result which is
fundamental to prove our result.

If ψ : [0, T ] → L02(Y,X) satisfies
R T
0 kψ(s)k2L02ds < ∞ then the above

sum in (2.10) is well defined as a X-valued random variable and we have

Ek
Z t

0
ψ(s)dZH(s)k2 ≤ 2Ht2H−1

Z t

0
kψ(s)k2L02ds.
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Proof. By Lemma 2.2, we have

Ek
Z t

0
ψ(s)dZH(s)k2 =

∞X
n=1

Ek
Z t

0

Z t

0

p
λnK

∗
H(ψen)(y1, y2)dBn(y1)dBn(y2)k2

≤
∞X
n=1

2Ht2H−1
Z t

0
λnkψ(s)enk2ds

= 2Ht2H−1
Z t

0
kψ(s)k2L02ds.

2

2.3. Definition and assumption

Henceforth we will assume that the family {A(t), t ∈ [0, T ]} of linear op-
erators generates an evolution system of operators {U(t, s), 0 ≤ s ≤ t ≤ T}.

An X-valued stochastic process {x(t), t ∈ [−τ, T ]}, is called a mild
solution of equation (1.1) if

i) x(.) ∈ C([−τ, T ],L2(Ω,X)),

ii) x(t) = ϕ(t), −τ ≤ t ≤ 0.

iii) For arbitrary t ∈ [0, T ], x(t) satisfies the following integral equation:

x(t) = U(t, 0)(ϕ(0) + g(0, ϕ(−r(0))))− g(t, x(t− r(t)))

−
Z t

0
U(t, s)A(s)g(s, x(s− r(s)))ds+

Z t

0
U(t, s)f(s, x(s− ρ(s)))ds

+

Z t

0
U(t, s)σ(s)dZQ(s) P− a.s

We introduce the following assumptions:

(H.1) i) The evolution family is exponentially stable, that is, there exist
two constants β > 0 and M ≥ 1 such that

kU(t, s)k ≤Me−β(t−s), for all t ≥ s,

ii) There exist a constant M∗ > 0 such that

kA−1(t)k ≤M∗ for all t ∈ [0, T ].
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688 El H. Lakhel

(H.2) The maps f, g : [0, T ] ×X → X are continuous functions and there
exist two positive constants C1 and C2, such that for all t ∈ [0, T ] and
x, y ∈ X:

i) kf(t, x)− f(t, y)k ∨ kg(t, x)− g(t, y)k ≤ C1kx− yk.
ii) kf(t, x)k2 ∨ kAk(t)g(t, x)k2 ≤ C2(1 + kxk2), k = 0, 1.

(H.3) i) There exists a constant 0 < L∗ <
1
M∗

such that

kA(t)g(t, x)−A(t)g(t, y)k ≤ L∗kx− yk,

for all t ∈ [0, T ] and x, y ∈ X.

ii) The function g is continuous in the quadratic mean sense: for
all x(.) ∈ C([0, T ], L2(Ω,X)), we have

lim
t−→s

kg(t, x(t))− g(s, x(s))k2 = 0.

(H.4) i) The map σ : [0, T ] −→ L02(Y,X) is bounded, that is : there ex-
ists a positive constant L such that kσ(t)kL02(Y,X) ≤ L uniformly

in t ∈ [0, T ].

ii) Moreover, we assume that the initial data ϕ = {ϕ(t) : −τ ≤ t ≤
0} satisfies ϕ ∈ C([−τ, 0],L2(Ω,X)).

3. Existence and Uniqueness of Mild Solutions

In this section we study the existence and uniqueness of mild solutions
of equation (1.1). First, it is of great importance to establish the basic
properties of the stochastic convolution integral of the form

X(t) =

Z t

0
U(t, s)σ(s)dZQ(s), t ∈ [0, T ],

where σ(s) ∈ L02(Y,X) and {U(t, s), 0 ≤ s ≤ t ≤ T} is an evolution system
of operators.

The properties of the process X are crucial when regularity of the mild
solution to stochastic evolution equation is studied, see [5] for asystematic
account of the theory of mild solutions to infinite-dimensional stochastic
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Neutral stochastic functional differential evolution equations... 689

equations. Unfortunately, the process X is not a martingale, and standard
tools of the martingale theory, yielding e.g. continuity of the trajectories
or L2−estimates are not available. The following result on the stochastic
convolution integral X holds. Suppose that σ : [0, T ] → L02(Y,X) satisfies
supt∈[0,T ] kσ(t)k2L02 <∞, and suppose that {U(t, s), 0 ≤ s ≤ t ≤ T} is an
evolution system of operators satisfying kU(t, s)k ≤ Me−β(t−s), for some
constants β > 0 and M ≥ 1 for all t ≥ s. Then, we have

1. The stochastic integral X : t −→
R t
0 U(t, s)σ(s)dZQ(s) is well-

defined and for any p ≥ 2 we have

Ek
Z t

0
U(t, s)σ(s)dZQ(s)kp ≤ CtpH( sup

t∈[0,T ]
kσ(t)kL02)

p,

where C is a constant depending only on H, M , p and β.

2. The stochastic integral X : t −→
R t
0 U(t, s)σ(s)dZQ(s) is continu-

ous.

Proof. 1. Using the Kahane-Khintchine inequality, there exists a con-
stant Cp such that

Ek
Z t

0
U(t, s)σ(s)dZQ(s)kp ≤ Cp

µ
Ek

Z t

0
U(t, s)σ(s)dZQ(s)k2

¶p
2

.

Let {en}n∈ be the complete orthonormal basis of Y and {zn}n∈ is a se-
quence of independent, real-valued Rosenblatt process each with the same
parameter H ∈ (12 , 1). Thus, using isometry property one can write

Ek
Z t

0

U(t, s)σ(s)dZQ(s)k2 =
∞X
n=1

Ek
Z t

0

U(t, s)σ(s)endzn(s)k2

= H(2H − 1)
Z t

0

{kU(t, s)σ(s)k

×
Z t

0

kU(t, r)σ(r)k|s− r|2H−2dr}ds

≤ H(2H − 1)M2

Z t

0

{e−β(t−s)kσ(s)kL02

×
Z t

0

e−β(t−r)|s− r|2H−2kσ(r)kL02dr}ds.

rvidal
Cuadro de texto
677



690 El H. Lakhel

Since σ is bounded, one can then conclude that

Ek
Z t

0

U(t, s)σ(s)dZH(s)k2 ≤ H(2H − 1)M2( sup
t∈[0,T ]

kσ(t)kL02)
2

Z t

0

{e−β(t−s)

×
Z t

0

e−β(t−r)|s− r|2H−2dr}ds.

Make the following change of variables, v = t − s for the first integral
and u = t− r for the second. One can write

Ek
Z t

0

U(t, s)σ(s)dZH(s)k2 ≤ H(2H − 1)M2( sup
t∈[0,T ]

kσ(t)kL02)
2

Z t

0

{e−βv

×
Z t

0

e−βu|u− v|2H−2du}dv

≤ H(2H − 1)M2( sup
t∈[0,T ]

kσ(t)kL02)
2

Z t

0

Z t

0

|u− v|2H−2dudv.

By using the equality,

RH(t, s) = H(2H − 2)
Z t

0

Z s

0
|u− v|2H−2dudv,

we get that

Ek
Z t

0
U(t, s)σ(s)dZQ(s)k2 ≤ CHM

2t2H( sup
t∈[0,T ]

kσ(t)kL02)
2.

Thus we obtain

Ek
Z t

0
U(t, s)σ(s)dZQ(s)kp ≤ CtpH( sup

t∈[0,T ]
kσ(t)kL02)

p.

2. Let h > 0 small enough, we have

k
Z t+h

0

U(t+ h, s)σ(s)dZQ(s)−
Z t

0

U(t, s)σ(s)dZQ(s)k2 ≤ 2k
Z t

0

(U(t+ h, s)− U(t, s))σ(s)dZQ(s)k2

+ 2k
Z t+h

t

U(t+ h, s)σ(s)dZH(s)k2

≤ 2[kI1(h)k2 + kI2(h)k2].
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By Lemma 2.2, we get that

EkI1(h)k2 ≤ 2Ht2H−1
Z t

0
k[U(t+ h, s)− U(t, s)]σ(s)k2L02ds.

Since
lim
h→0

k[U(t+ h, s)− U(t, s)]σ(s)k2L02 = 0,

and

k(U(t+ h, s)− U(t, s))σ(s)kL02 ≤MLe−β(t−s)e−βh+1 ∈ L1([0, T ], ds),

we conclude, by the dominated convergence theorem that,

lim
h→0

EkI1(h)k2 = 0.

Again by Lemma 2.2, we get that

EkI2(h)k2 ≤
2Ht2H−1LM2(1− e−2βh)

2β
.

Thus,
lim
h→0

EkI2(h)k2 = 0.

2

Thanks to Lemma 3, the stochastic integral X(t) is well-defined and it
belongs to the space C([−τ, 0],L2(Ω,X)).

We have the following theorem on the existence and uniqueness of mild
solutions of equation (1.1).

Suppose that (H.1)-(H.4) hold. Then, for all T > 0, the equation (1.1)
has a unique mild solution on [−τ, T ].

Proof. Fix T > 0 and let BT := C([−τ, T ],L2(Ω,X)) be the Banach
space of all continuous functions from [−τ, T ] into L2(Ω,X), equipped with
the supremum norm

kxk2BT
= sup
−τ≤t≤T

Ekx(t, ω)k2.

Let us consider the set

ST (ϕ) = {x ∈ BT : x(s) = ϕ(s), for s ∈ [−τ, 0]}.
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ST (ϕ) is a closed subset of BT provided with the norm k.kBT
.

We transform (1.1) into a fixed-point problem. Consider the operator
ψ on ST (ϕ) defined by ψ(x)(t) = ϕ(t) for t ∈ [−τ, 0] and for t ∈ [0, T ]

ψ(x)(t) = U(t, 0)(ϕ(0) + g(0, ϕ(−r(0))))− g(t, x(t− r(t)))

−
Z t

0

U(t, s)A(s)g(s, x(s− r(s)))ds+

Z t

0

U(t, s)f(s, x(s− ρ(s)))ds

+

Z t

0

U(t, s)σ(s)dZQ(s)

=
5X

i=1

Ii(t).

Clearly, the fixed points of the operator ψ are mild solutions of (1.1). The
fact that ψ has a fixed point will be proved in several steps. We will first
prove that the function ψ is well defined.

Step 1: For arbitrary x ∈ ST (ϕ), we are going to show that each function
t→ Ii(t) is continuous on [0, T ] in the L

2(Ω,X)-sense.

For the first term I1(h), by Definition 2.1, we obtain

lim
h−→0

(U(t+ h, 0)− U(t, 0))(ϕ(0) + g(0, ϕ(−r(0)))) = 0.

From (H.1), we have

k(U(t+ h, 0)− U(t, 0))(ϕ(0) + g(0, ϕ(−r(0))))k

≤Me−βt(e−βh + 1)kϕ(0) + g(0, ϕ(−r(0)))k ∈ L2(Ω).

Then we conclude by the Lebesgue dominated theorem that

lim
h−→0

kI1(t+ h)− I1(t)k2 = 0.

For the second term I2(h), assumption (H.2) ensures that

lim
h−→0

kI2(t+ h)− I2(t)k2 = 0.

To show that the third term I3(h) is continuous, we suppose h > 0
(similar calculus for h < 0). We have
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kI3(t+ h)− I3(t)k ≤
°°°°Z t

0
(U(t+ h, s)− U(t, s))A(s)g(s, x(s− r(s)))ds

°°°°
+

°°°°°
Z t+h

t
U(t, s)g(s, x(s− r(s)))ds

°°°°°
≤ I31(h) + I32(h).

By Hölder’s inequality, we have

kI31(h)k ≤ t

Z t

0
k(U(t+ h, s)− U(t+ h, s))A(s)g(s, x(s− r(s))k2ds.

By Definition 2.1, we obtain

lim
h−→0

(U(t+ h, s)− U(t, s))A(s)g(s, x(s− r(s))) = 0.

From (H.1) and (H.2), we have

k(U(t+ h, s)− U(t, s))A(s)g(s, x(s− r(s)))k

≤ C2Me−β(t−s)(e−βh + 1)kA(s)g(s, x(s− r(s)))k ∈ L2(Ω).

Then we conclude by the Lebesgue dominated theorem that

lim
h−→0

kI31(h)k2 = 0.

So, estimating as before. By using (H.1) and (H.2), we get

kI32(h)k2 ≤
M2C2(1− e−2βh)

2β

Z t+h

t
(1 + kx(s− r(s))k2)ds.

Thus,
lim
h−→0

kI32(h)k2 = 0.

For the fourth term I4(h), we suppose h > 0 (similar calculus for h < 0).
We have

kI4(t+ h)− I4(t)k ≤
°°°°Z t

0
(U(t+ h, s)− U(t, s))f(s, x(s− ρ(s)))ds

°°°°
+

°°°°°
Z t+h

t
U(t, s)f(s, x(s− ρ(s)))ds

°°°°°
≤ kI41(h)k+ kI42(h)k.
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By Hölder’s inequality, we have

kI41(h)k ≤ t

Z t

0
k(U(t+ h, s)− U(t, s))f(s, x(s− ρ(s)))k2ds.

Again exploiting properties of Definition 2.1, we obtain

lim
h−→0

(U(t+ h, s)− U(t, s))f(s, x(s− ρ(s))) = 0,

and
k(U(t+ h, s)− U(t, s))f(s, x(s− ρ(s)))k

≤Me−β(t−s)(e−βh + 1)kf(s, x(s− ρ(s)))k ∈ L2(Ω).

Then we conclude by the Lebesgue dominated theorem that

lim
h−→0

kI41(h)k2 = 0.

On the other hand, by (H.1) , (H.2), and the Hölder’s inequality, we
have

kI42(h)k ≤
M2C2(1− e−2βh)

2β

Z t+h

t
(1 + kx(s− ρ(s))k2)ds.

Thus
lim
h→0

kI42(h)k2 = 0.

Now, for the term I5(h), we have

kI5(t+ h)− I5(t)k2 ≤ 2k
Z t

0
(U(t+ h, s)− U(t, s))σ(s)dZQ(s)k2

+ 2k
Z t+h

t
U(t+ h, s)σ(s)dZQ(s)k2.

By Lemma 3 we get

lim
h→0

kI5(t+ h)− I5(t)k2 = 0.

The above arguments show that lim
h→0

Ekψ(x)(t + h) − ψ(x)(t)k2 = 0.

Hence, we conclude that the function t→ ψ(x)(t) is continuous on [0, T ] in
the L2-sense.
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Step 2: Now, we are going to show that ψ is a contraction mapping in
ST1(ϕ) with some T1 ≤ T to be specified later. Let x, y ∈ ST (ϕ), by using
the inequality

(a+ b+ c)2 ≤ 1
ν
a2 +

2

1− ν
b2 +

2

1− ν
c2,

where ν := L∗M∗ < 1, we obtain for any fixed t ∈ [0, T ]

kψ(x)(t) − ψ(y)(t)k2

≤ 1

ν
kg(t, x(t− r(t)))− g(t, y(t− r(t)))k2

+
2

1− ν
k
Z t

0
U(t, s)A(s)(g(s, x(s− r(s)))− g(s, y(s− r(s))))dsk2

+
2

1− ν
k
Z t

0
U(t, s)(f(s, x(s− ρ(s)))− f(s, y(s− ρ(s))))dsk2

=
3X

k=1

Jk(t).

By using the fact that the operator k(A−1(t))k is bounded, combined
with the condition (H.3), we obtain that

kJ1(t)k ≤
1

ν
kA−1(t)k2|A(t)g(t, x(t− r(t)))−A(t)g(t, y(t− r(t)))k2

≤ L2∗M
2
∗

ν
Ekx(t− r(t))− y(t− r(t))k2

≤ ν sup
s∈[−τ,t]

Ekx(s)− y(s)k2.

By hypothesis (H.3) combined with Hölder’s inequality, we get that

kJ2(t)k ≤ k
Z t

0
U(t, s) [A(t)g(t, x(t− r(t)))−A(t)g(t, y(t− r(t)))] dsk

≤ 2

1− ν

Z t

0
M2e−2β(t−s)ds

Z t

0
Ekx(s− r(s))− y(s− r(s))k2ds

≤ 2M2L2∗
1− ν

1− e−2βt

2β
t sup
s∈[−τ,t]

Ekx(s)− y(s)k2.
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Moreover, by hypothesis (H.2) combined with Hölder’s inequality, we
can conclude that

EkJ3(t)k ≤ Ek
Z t

0
U(t, s) [f(s, x(s− ρ(s)))− f(s, y(s− ρ(s)))] dsk2

≤ 2C21
1− ν

Z t

0
M2e−2β(t−s)ds

Z t

0
Ekx(s− r(s))− y(s− r(s))k2ds

≤ 2M2C21
1− ν

1− e−2βt

2β
t sup
s∈[−τ,t]

Ekx(s)− y(s)k2.

Hence

sup
s∈[−τ,t]

Ekψ(x)(s)− ψ(y)(s)k2 ≤ γ(t) sup
s∈[−τ,t]

Ekx(s)− y(s)k2,

where

γ(t) = ν + [L2∗ + C21 ]
2M2

1− ν

1− e−2βt

2β
t

By condition (H.3), we have γ(0) = ν = L∗M∗ < 1. Then there exists
0 < T1 ≤ T such that 0 < γ(T1) < 1 and ψ is a contraction mapping
on ST1(ϕ) and therefore has a unique fixed point, which is a mild solution
of equation (1.1) on [−τ, T1]. This procedure can be repeated in order to
extend the solution to the entire interval [−τ, T ] in finitely many steps.
This completes the proof. 2

4. An Example

In recent years, the interest in neutral systems has been growing rapidly
due to their successful applications in practical fields such as physics, chem-
ical technology, bioengineering, and electrical networks. We consider the
following stochastic partial neutral functional differential equation with fi-
nite delays τ1 and τ2 (0 ≤ τi ≤ τ < ∞, i = 1, 2), driven by a Rosenblatt
process
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d [u(t, ζ) +G(t, u(t− τ1, ζ))] =
h
∂2

∂2ζu(t, ζ) + b(t, ζ)u(t, ζ) + F (t, u(t− τ2, ζ))
i
dt

+ σ(t)dZH(t), 0 ≤ t ≤ T, 0 ≤ ζ ≤ π,

u(t, 0) = u(t, π) = 0, 0 ≤ t ≤ T

u(t, ζ) = ϕ(t, ζ), t ∈ [−τ, 0], 0 ≤ ζ ≤ π,
(4.1)
where ZH is a Rosenblatt process, b(t, ζ) is a continuous function and is
uniformly Hölder continuous in t, F , G : R+ × R −→ R are continuous
functions.

To study this system, we consider the space X = L2([0, π]), Y = R and
the operator A : D(A) ⊂ X −→ X given by Ay = y00 with

D(A) = {y ∈ X : y00 ∈ X, y(0) = y(π) = 0}.

It is well known that A is the infinitesimal generator of an analytic semi-
group {T (t)}t≥0 on X. Furthermore, A has discrete spectrum with eigen-
values −n2, n ∈ and the corresponding normalized eigenfunctions given
by

en :=

r
2

π
sinnx, n = 1, 2, ....

In addition (en)n∈ is a complete orthonormal basis in X and

T (t)x =
∞X
n=1

e−n
2t < x, en > en,

for x ∈ X and t ≥ 0.

Now, we define an operator A(t) : D(A) ⊂ X −→ X by

A(t)x(ζ) = Ax(ζ) + b(t, ζ)x(ζ).

By assuming that b(., .) is continuous and that b(t, ζ) ≤ −γ (γ > 0) for
every t ∈ R, ζ ∈ [0, π], it follows that the system(

u0(t) = A(t)u(t), t ≥ s,
u(s) = x ∈ X,
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has an associated evolution family given by

U(t, s)x(ζ) =

∙
T (t− s) exp

R t
s
b(τ,ζ)dτ x

¸
(ζ).

From this expression, it follows that U(t, s) is a compact linear operator
and that for every s, t ∈ [0, T ] with t > s

kU(t, s)k ≤ e−(γ+1)(t−s)

In addition, A(t) satisfies the assumption H1 (see [2]).

To rewrite the initial-boundary value problem (4.1) in the abstract form
we assume the following:

i) The substitution operator f : [0, T ]×X −→ X defined by f(t, u)(.) =
F (t, u(.)) is continuous and we impose suitable conditions on F to
verify assumption H2.

ii) The substitution operator g : [0, T ]×X −→ X defined by g(t, u)(.) =
G(t, u(.)) is continuous and we impose suitable conditions on G to
verify assumptions H2 and H3.

iii) The function σ : [0, T ] −→ L02(L2([0, π]),R) is bounded, that is, there
exists a positive constant L such that kσ(t)kL02 ≤ L < ∞, uniformly

in t ∈ [0, T ], where L := supt∈[0,T ]e
−t.

If we put (
u(t)(ζ) = u(t, ζ), t ∈ [0, T ], ζ ∈ [0, π]
u(t, ζ) = ϕ(t, ζ), t ∈ [−τ, 0], ζ ∈ [0, π],(4.2)

then, the problem (4.1) can be written in the abstract form

½
d[x(t) + g(t, x(t− r(t)))] = [A(t)x(t) + f(t, x(t− ρ(t)))]dt+ σ(t)dZH(t), 0 ≤ t ≤ T,
x(t) = ϕ(t), −τ ≤ t ≤ 0.

Furthermore, if we assume that the initial data ϕ = {ϕ(t) : −τ ≤ t ≤ 0}
satisfies ϕ ∈ C([−τ, 0],L2(Ω,X)), thus all the assumptions of Theorem 3
are fulfilled. Therefore, we conclude that the system (4.1) has a unique
mild solution on [−τ, T ].
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