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1. Introduction and Preliminaries

The notion of almost convergence was introduced by Lorentz [7]. Matrix
domains of the generalized difference matrix B(r, s) and triple band matrix
B(r,s,t) in sets of almost null and almost convergent sequences have been
investigated by Bagar and Kirigci [3] and Sonmez [18], respectively. Let w
be the vector space of all real sequences. We shall write ¢, ¢g and [, for the
spaces of all convergent, null and bounded sequences. Moreover, we write
bs and cs for the spaces of all bounded and convergent series, respectively.
Let X and Y be two sequence spaces and A = (a,x) be an infinite matrix
of real or complex entries, where n,k € N. Then we say that A defines a
matrix mapping from X into Y if for every sequence x = (z1) € X, the
sequence Az = {A,(z)} is in Y, where

(1.1) Ap(x) = Zankfﬁk (neN).
k

By (X, Y) we denote the class of all matrices A such that A : X — Y. Thus
A€ (X,Y) if and only if the series on the right-hand side of 1.1 converges
for each n € N and every x € X and we have Az € Y for all x € X.

The matrix domain X 4 of an infinite matrix A in a sequence space X
is defined by

(1.2) Xa={z=(ap) cw: Az € X}

which is a sequence space.

A B-space is a complete normed space. A topological sequence space
in which all coordinate functionals 7y, 7 (x) = z, are continuous is called
a K-space. A BK-space is defined as a K-space which is also a B-space,

that is, a BK-space is a Banach space with continuous coordinates. For
1

00 1
example, the space [,(1 < p < 00) is a BK-space with ||z||, = <Z |a:k]p> ’
k=0
and cg, ¢ and I are BK-spaces with ||z]lcc = sup|zk|. A sequence (by,)

in a normed space X is called a Schauder basis for X if for every z € X
there is a unique sequence (o) of scalars such that z = Y, anby, ie.,

lim |z — Z anby| = 0.

n=0
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The Cesaro matrix C' = (¢,y) of order one is a triangle matrix defined by

1
Cols = n+i> OSkSnv
0, k> n,

for all n, k € N.
One of the best known regular matrix is the Riesz matrix R = (), which
is a triangle matrix and is defined by

Ry

) 0<k<n,
Tk 0, k> n,

for all n,k € N, where (rg) is a real sequence with rg > 0,7, > 0 and

R, = Zrk. The Riesz matrix R is regular if and only if R, — oo as

k=0
n — oo [13]. The matrix domain X4 of a sequence space X has a basis if

and only if X has a basis and A = (a,y) is a triangle matrix.
Let r, s be non-zero real numbers and define the generalized difference ma-
trix B(r,s) = (buk(r,s)) for all k,n € N as follows:

7

r, k
(1.3) bni(r,s) = s, k -
0, 1 <n-—1lork>n.

n,
n
k

IA I

It is easy to calculate that the inverse B=1(r,s) = (bni(r,s)) of the
generalized difference matrix is given by

- (=) k 1<k <n,
bk (1 5) = { 0, k> n.

for all k,n € N.

We now focus on sets of almost convergent sequences. A continuous
linear functional ¢ on [, is called a Banach limit if
(i) ¢(x) > 0 for x = (zy), x > 0 for every k,

(ii) ¢(wok)) = @(wr), where o is shift operator which is defined on w by
o(k) = k + 1 and
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(iii) ¢(e) =1, where e = (1,1,1,...).

A sequence z = (z1) € lo is said to be almost convergent to the gen-
eralized limit a if all Banach limits of x are a (see [7]) and denoted by
f —limx = a. In other words, f — limz} = a uniformly in n if and only if
lim (xn + Tpy1+ ...+ $n+p71)
p—00 P

of all almost convergent and almost null sequences by f and fo, respectively.

= qa, uniformly in n. We denote the space

In [21] Zararsiz and Sengoniil defined the concepts of the spaces of r f-
convergent and 7 f-null sequences and it is proved that the spaces rf and
r fo are Banach spaces with the norm

m

1
— > TkThin
B k=0

lzllrf = lz|l-p, = sup , uniformly in n.
m

In addition to these spaces, Zararsiz [22] introduced two convergent
sequences br f and br fy as the sets of all sequences such that their B(r, s)-
transforms are in the spaces rf and rfy, respectively.

Let us define the sequence z = (zi) as the B(r, s)-transform of a sequence
x = (zy), that is,

(1.4) 2z = sxp—1+rxr (keN).
Corollary 1.1. [22] The space brf does not have a Schauder basis.

A set A C w is said to be convex if z,y € X implies C = {z € w : z =
tr+ (1 —1t)y,0<t<1} CA.

An Orlicz function M : [0,00) — [0, 00) is a continuous, non-decreasing and
convex function such that M (0) = 0, M(z) > 0 for z > 0 and M (x) — oo
as x — oo. Lindenstrauss and Tzafriri [6] used the idea of Orlicz function
to define the following sequence space,

EM—{Q:—(a:k)Ew:ZM<@) < 00, forsomep>0}
k=1 P

is known as an Orlicz sequence space. The space £/ is a Banach space with

the norm -
2| = inf{p >0 ZM<@> < 1}.

=1 p
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A sequence M = (M) of Orlicz functions is said to be Musielak-Orlicz
function (see [9], [12]). A Musielak-Orlicz function M = (M) is said to
satisfy Ag-condition if there exist constants a, K > 0 and a sequence
c = ()%, €11 (the positive cone of I') such that the inequality

My (2u) < KMy (u) + ¢,

holds for all ¥k € N and v € R, whenever My(u) < a. The reader can
refer to the textbook Basar [2] containing the chapters entitled Normed
and Paranormed Sequence Spaces and Matrix Domains in Sequence Spaces
together with the paper Dutta and Basar [4] devoted to the generalization
of Orlicz sequence spaces. For more details about sequence spaces see For
more details about sequence spaces see ([10], [11], [14], [15], [16], [17], [20])
and references therein.

Definition 1.2. Let X be a linear metric space. A functionp : X — R is
called paranorm, if

(P1) p(x) >0 forallz € X,

(P2) p(-x) = p(x) for all x € X,

(P3) p(x+y) < p(z) + p(y) for all z,y € X,

(P4) if (\n) is a sequence of scalars with A\, — X asn — oo and (z,,) is a
sequence of vectors with p(z, —x) — 0 as n — oo, then p(A,x, — A\x) —
0 asn — oo.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm
and the pair (X,p) is called a total paranormed space. It is well known
that the metric of any linear metric space is given by some total paranorm
(see [19, Theorem 10.4.2, p. 183]).

Let M = (M) be a sequence of Orlicz functions, p = (pi) be any bounded
sequence of positive real numbers and v = (ug) be a sequence of strictly
positive real numbers. By making the use of B(r, s)-transform of sequences
x = (x), we define the following sequence spaces:

Pk
1 & n— n
[brf, Myu,p) = { = (z) €Ew:3a € C3lim— > |uphy, TR[5Thin -1 + 1Tk in] _
m R k=0 P

a, uniformily in n and some p > O}
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and

m Pk
[br fo, M, u,p] = {a: = () Ew: limi Z [ukMk (Tk|8$k+n—; + T$k+n|)] —0,

uniformily in n and some p > O}.

If My(z) = x for all k € N and p = 1, then above sequence spaces
reduces to [brf,u, p|] and [br fo, u, p], where

Pk

:a7
m

1 m
[brf,u,p] = {g: =(ap) €w:JaeC> limR— Z {uk (rklsxk+n_1+rxk+n|)
™ k=0

uniformily in n}

and

Pk
= ()7

N
[br fo, u,p] = {l’ = (wg) € w: hnrln R Z [Uk (Tk|5$k+n—1+r:ck+n|)
™ =0

uniformily in n}

By taking (px) = 1 and (ug) = 1, for all k£ € N, then we get the following
sequence spaces:

1 & B
b f, M] = {m— (i) €w:daeCalme— [Mk(r’“’sx“” 1*”““')] —a
m m p
k=0

uniformily in n and some p > O}
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and

[br fo, M] = {az = (xp) Ew: hglnRi Z |:Mk (Tk|533k;+n—1 + T$k+n|)] ~0,

uniformily in n and some p > O}.

With the notation of 1.1, the sequence spaces [br f, M, u, p] and [br fo, M, u, p)
can be redefined as follows:

[brf07 M, u,p] = {[be? M, uap]}B(T,s) and [brf, M, u,p] = {[Tfa M, uvp]}B(T,S)'
(1.5)

The following inequality will be use throughout the paper. If 0 < p; <
suppr = H, K = max(1,2771), then

(1.6) |ay, + by [P* < K{|ag[P* + [bg[P*}

for all k£ and ag, by € C. Also |a|P* < max(1, |a|?) for all a € C.

In this paper, we introduce the sequence spaces [br f, M, u, p| and [br fo, M, u, p|.
We investigate some topological properties of these new sequence spaces
and establish some inclusion relations between these spaces. Also we de-
termine the a—, f— and y— duals of these spaces and construct the matrix
transformation of these spaces.

2. Main Results

Theorem 2.1. Let M = (M) be a sequence of Orlicz functions, p = (px)
be a bounded sequence of positive real numbers and v = (uy) be a sequence
of strictly positive real numbers. Then [br f, M, u, p] and [br fo, M, u, p] are
linear spaces over the complex field C.

Proof. It is a routine verification so we omit the proof.

Theorem 2.2. Let M = (M) be a sequence of Orlicz functions and
p = (px) be a bounded sequence of positive real numbers and u = (uy,)
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be a sequence of strictly positive real numbers. Then [brf, M, u,p] and
[br fo, M, u,p] are paranormed spaces with the paranorm defined by

m PEN\ AF
1 _
g(x) = inf (p)% N E : wp My, Tk|SThin—1+ TTkin <1,
R 1 P

uniformly in n >0, p> 0},

where 0 < p, < suppy, = H, M =max(1, H).

Proof. For the proof verification see [15].

Theorem 2.3. Let M = (M},) be a sequence of Orlicz functions, u = (ug,)
be a sequence of strictly positive real numbers. If p = (pg) and q¢ = (qx)
are bounded sequences of positive real numbers with 0 < pp < qr < oo for
each k, then [br fo, M, u,p|] C [brf, M, u,q].

Proof. It is easy to prove.

Theorem 2.4. Let M = (My) be a sequence of Orlicz functions which

My (t
satisfies the As-condition and 8 = tlim ﬁ > 0 for all kK € N. Then

[b?“f[), M7 u,p] - [b?“f[), u,p]-

Proof. It is easy to prove.
The following theorems can be proved in a similar way as in [15].

Theorem 2.5. If M" = (M) and M" = (M]!) are sequences of Orlicz
functions satisfying the As-condition, then

[b?“fo,/\/l,u,p] N [b?“fo,/\/l/,u,p] - [beo, (M, + M”)>u7p]'

Theorem 2.6. Let M = (M},) and M’ = (M) be two sequences of Orlicz
functions, then

[brfo,./\/l/,U,p] - [bT‘fo,M OM/,'LL,p],

where M o M’ is the composition of M and M'.
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Theorem 2.7. The spaces [brf, M, u, p] and [br fo, M, u, p] are BK-spaces
with the norm defined by

(2.1) Hmnbrfo,/\/l,wp = ||$||brf7/\/l,u7p

Pk
we M, Tk‘skarnfl + T.’Ek+n’
k=0 p

, uniformly in n.

1 m
o

Proof. Since 1.4 holds, brf and brfy are the BK-spaces with respect
to their norms (see Theorem 3.3 in [22]) and the matrix B(r,s) is nor-
mal, Theorem 4.3.12 of Wilansky [19] gives the fact that [br f, M, u, p] and
[br fo, M, u,p] are BK-spaces with the given norms. This completes the
proof.

Theorem 2.8. The spaces [brf, M,u,p] and [brfy, M,u,p| are linearly
isomorphic to the spaces br f and br fy, respectively.

Proof. We only consider the sequence spaces [brf, M,u,p| and brf
and other will follow similarly. To show the theorem, we must show the
existence of linear bijection between the spaces [br f, M, u,p| and brf. For
this, we consider the transformation 71" defined with the notation 1.4, from
[br f, M, u,p] to brf by x — y = T'z. The linearity of T" is obvious. Further,
it is trivial that = = 6 = (0,0,0...) whenever Tx = 6 and hence T is
injective. Next, let y = (yx) € brf and defined the sequence = = (x1) by
({B~Y(r, s)y})x for all k € N. Then, it is clear that

k—1 j k—1 j
_ S S S
(B s)h = soatran = 3 2 (<2) s+ 3 (<2) ey =
J=0 j=0

for all £ € N which shows that

Pk
1 m 3
hrnll— E Uk-A[k(QHSl]H—n 1 7$k+n|)]

™ =0

= [brf, M, u,p] — limy, uniformly in n.
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Thus, x = (zx) € [brf, M,u,p]. Consequently, it is clear that T is
surjective. Because of the fact that is linear bijection, [brf, M, u,p] and
brf are linearly isomorphic. This completes the proof.

Theorem 2.9. The spaces [br fo, M, u, p] and [br f, M, u, p| are convex spaces.

Proof. The proof is clear from the definition of convexity.

Corollary 2.10. The space [brf, M, u, p] does not have a Schauder basis.

3. f and y-Duals

In this section, we determine the 5 and y-duals of the spaces [br f, M, u, p]
and [br fo, M, u, p]. For the sequence spaces X and Y, define the set S(X,Y)
by

(3.1) SX,)Y)={z= () €cw:2z=(apz) €Y forall z = (z3) € X}.

With the notation of 3.1 the a-, 5- and ~-duals of a sequence space X,
which are, respectively, denoted by X<, X# and X7 are defined by S(X, 1),
S(X,cs) and S(X,bs).

The following theorems are proved by using some lemmas of [21].

Theorem 3.1. The ~y-dual of the space [brf, M,u,p| is the set dy(r,s),
where

j—k
. S t(=2) wl\]
dl(r,s)—{a—(ak)Ew:supZ [ukMk( )] <oo}.

[y — P

Proof. The proof of the theorem is clear, so we omit it.

Theorem 3.2. Let us write the sets da(r, s),ds(r, s) and d4(r,s) by

j—k
[ (1S (2) wl )
da(r,s) =ca=(ay) €Ew: lim Z ug My, exists 7,

k=0 | P

r n Q7 _a PE
d3(r,s):{a=(ak)€w:li7¥12n: ukMk<A(ij%(p?) a; /f) )]

k=0 |
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where

k=0

da(r,s) = {a = (ar) € w: liéni [ukMk<

for all j,k € N. Then, D = [brf, M, u,p]® = N, di(r, s).

Proof. Let us define the matrix V' = (vy) via the sequence z = (z;) € w

by
j—k
. St -5) sl
Upk = Z ug My, , 0<k<n,

k=0 p
0, k> mn,

for all n, k € N. By considering the relation

n 1 ik
n |Zj—k?(_$) yil\ 17"
ap =y |uxMy , we have

k=0 p

j—k
. , i d(=2) mml\ ™
(3.2) szsnk = Z up My, = (Vy), (n€N).
k=0

k=0 P

From 3.2, we see that zz = (2xx)) € cs whenever © = () € [brf, M, u, p)
if and only if Vy € ¢ whenever y = (y;) € brf. Then, we have [br f, M, u,p]® =

ﬂ?:_l di(r, s).

4. Matrix Transformations

Bagsar [1], Kuttner [5] and Lorentz and Zeller [8] have been used the methods
of dual summability. Now, let us review these methods.
Let us suppose that the sequences z = (z3) and y = (yx) are connected
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with 1.4 and let A-transform of the sequence x = (x) be z = (z;) and
B-transform of the sequence y = (yx) be t = (t), that is,

(4.1) 2z = (Ax) = Zankxk, (keN)
k

(4.2) tk = (Byk=>_ butk, (keN).
p

Method B is applied to the B(r, s)-transform of the sequence = = (x)
while the method A is directly applied to the terms of the sequence = =
(xg). So it is clear that A and B are essentially different [1]. Let us
suppose that the matrix product BB(r,s) exists. If z; turns into t; (or
vice versa), under the application of the formal summation by parts, then
the methods A and B as in 4.1 and 4.2 are called generalized difference
dual type matrices. It means that BB(r, s) exists and is equal to A. This
condition is equivalent to the following equality:

j—k
n ‘% A |\ 1P
(4.3) b = > [ukMk< ’ ’“( ) ! )}

k=0 p

Pk
" bp.g— b,
or ankzz ['LLkMk(|S ok 1+T k|)] 5

k=0 p

for all n, k € N.

Theorem 4.1. Let i be any given sequence space and the matrices A =
(ank) and B = (bny) be generalized difference dual type matrices. Then,
A e ([brf,M,u,p] : p) if and only if B € (brf : p) and (ank)reN €
[br f, M,u,p]? for all n € N.

Proof. Let p be any sequence space and A = (ax) and B = (by) be
generalized difference dual type matrices, that is, 4.3 holds. Furthermore,
the spaces [br f, M, u, p| and br f are isomorphic. Let A € ([brf, M, u,p] : u)
and y = (yx) € brf. Then BB(r, s) exists and (ank)reN € D, it means that
(bnk)renN € 11 for each n € N. Hence, we have

(4.4) > bkt = D GnkTp,
! k
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for all n € N which concluded that B € (brf : p). On the contrary, let
(ank)reN € [brf, M,u,p]® for each n € N and B € (brf : p) and x =
(zg) € [brf, M,u,p]. Then it is clear that Az exists. Thus, we attain from
the following equality for all n € N

1 ik
i (-f) W\
up My, Yk = > bnkyk

p =0

m m

Sawn = Y

k=0 k=0

as m — oo that Az = By and it is easy to show that A € ([brf, M, u,p] : u).
This completes the proof.

Theorem 4.2. Let us assume that the components of the infinite matrices
A = (api) and E = (eyy) are connected with the following relation

Pk
w My <|San—1,kp+ Tk ) ] ’

for all n € N and p be any given sequence space. Then, A € (u :
[brf, M,u,p]) if and only if E € (u: brf).

n

k=0

Proof. It is easy to prove.
Now, we list the following conditions;

j—k
: [ (Z?k%(%) anjr)rk
(4.6) supz u, My, < 00,

[y p

i—k
ISiat(=2) eml\]™
(4.7) li}ln wp My, P = ar Vk €N,

(4.8) h}lni: {ukMk<A<Z?k%( g)j—kam ak))]?k .

k=0 p
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for each fixed k € N,

n

1 =k
where A(Z—(—f) anj—ak)
—r r

e

"1 s\/7F LA | s\J 1=k
- Y- a2 o(-2) e actan.

=k "

j—k
[ (Z?ki(i) |)]
(4.9) brf—li}ln u My, = ag

p

exists for each fixed k € N,

no P

Pk
(4.10) supz [ukMk (|San_1’k + | )] < o0,

Pk
(411) b?”f _ hgbn [ukMk (’5an—1,kp+ T‘ank‘ )] = ay,

exists for each k € N,

Pk
(4.12) brf —lim {ukMk (‘Sanl’k + ra%’)] = a,
n p

By using the lemmas of [21] and Theorems 4.1 and 4.2, we derive the
following results:

Corollary 4.3. The following statements hold:

() A = (anr) € ((brf, M, u,p] : loo) if and only if (an)reN € [brf, M, u, p)’
for alln € N and 4.6 holds.

(i) A = (an) € ([brf, M,u,p] : ¢) if and only if (ank)renN € [brf, M, u, p]?
for alln € N and 4.6, 4.7, 4.8 and 4.9 hold.

(iii) A = (ank) € (loo = [brf, M,u,p]) if and only if 4.10, 4.11 and 4.12 hold.
(iv) A = (ank) € (c: [brf, M, u,p]) if and only if 4.11 and 4.12 hold.
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