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1. Introduction

Fractional Calculus is one of the generalizations of classical calculus and
it has been used successfully in various fields of Science and Technology.
Many applications of fractional calculus can be found in other diverse fields,
etc. (See [2], [6], [10], [11], [15], [20],[12]). Many works concerning to the
electrical components modeling and related to the behavior of the circuits
and systems with memristors, meminductors, or memcapacitors have been
reported in [25], [9]

Recently, it has been suggested a fractional differential equation that
combine the simple harmonic oscillations of an LC circuit with the dis-
charging of an RC circuit. The behavior of this new hybrid circuit without
sources has been analyzed by Rousan et. al [4]. In the work of Obeidat et
al. [3] the simple current source-wire circuit has been studied using frac-
tional calculus approach for direct and alternating current source. Guia
et al. [18] have done the analysis on the time and frequency domain for
the RC electric circuit of fractional order. Shah et al. [19] got analytic
solution for the RL electric circuit model in fractional order. Aguilar et
al. [14] describes RL and RC circuits using fractional derivative with two
fractional orders in LiouvilleCaputo sense.

In this paper, we obtain analytical solutions of the electrical circuits
described by Hilfer type composite fractional derivative operators. We use
the Laplace transform of getting the analytical solutions of the RL electrical
circuits described bycomposite fractional derivative operators.

The simplest electric circuit is a series circuit in which we have a source
of electric energy (electromotive force) such as a AC generator or battery,
and a resistor, which consume the energy. If we close the switch, a current
will flow through the resistor and this will cause a voltage drop, that is,
the electric potential at the two ends of the resistor will be different, this
potential difference or voltage drop can be measured by a voltmeter.

Current flow in a circuit composed of a battery and conductors can be
expressed as ( Toro [28])

I =
A

ρ

dv

dt
(1.1)

where the derivative term denotes the electric field gradient, which is called
the electroscopic force by way of representing the volume density at a point
in the conductor. If a conductor of uniform cross-sectional area is used,
then (1.1) becomes

I =
A

ρ

V

L
=

V

R
(1.2)
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where V is the potential difference in volts appearing across the conductor
of length l, A is the cross-sectional area, ρ is a property of the material called
the resistivity and R is the resistance of the conductor in ohms. Equation
(1.2) is a mathematical description of Ohms law. It states that the strength
of the current in a wire is proportional to the potential difference between
its ends. Ohms law may be alternatively expressed as

V = IR(1.3)

The form of the equation reveals that for any given potential difference,
the amount of current produced is inversely proportional to the resistance,
which in turn is dependent upon the composition of the wire.
The voltage drop VR across a resistor is proportional to the instantaneous
current I, say

VR = IR(1.4)

where, the constant of proportionality R is called resistance of the resistor.
The current I is measured in amperes, the resistance R in ohms, and the
voltage VR in volts. The voltage drop VL across an inductor is proportional
to the instantaneous time rate of change of the current I, say

VL = L

µ
dI

dt

¶
(1.5)

where, the constant of proportionality L is called the inductance of the
inductor and is measured in henrys, time t is measured in seconds. The
Kirchhoff’s voltage Law can be stated as: The algebraic sum of all the
instantaneous voltage drops around any closed loop is zero, or the voltage
impressed on a closed loop is equal to the sum of the voltage drops in the
rest of the loop.

VL + VR = 0(1.6)

The governing equation of current flow using (1.4), (1.5) and Kirchhoff’s
voltage law as

L
dI

dt
+RI = E(t)(1.7)

where I is the current and L is the inductance.
The Heaviside unit step function u(t− a) is defined as (Kreyzing [8])

u(t− a) =

(
0, for t ≤ a,
1, for t > a.
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2. Mathematics Prerequisites

The right-sided Riemann-Liouville fractional integral of order α (Kilbas et.
al [1]) defined as

RL
aIt

α(f(t)) =
1

Γ(α)

tZ
a

(t− τ)α−1f(τ) dτ, (t > a)(2.1)

where R(α) > 0.
The right-sided Riemann-Liouville fractional derivative of order α(Kilbas
et. al [1]) defined as

RL
aDt

α(f(t)) =

µ
d

dt

¶n
(RLaIt

n−αf(t)) (R(α) > 0, n = [R(α)] + 1),(2.2)

where [α] represents the integer part of the number α.
The following fractional derivative of order α > 0 (Caputo [17]) defined as

C
aDt

α(f(t)) =

⎧⎪⎨⎪⎩
1

Γ(m−α)
tR
a

fm(τ)
(t−τ)α+1−m dτ, for m− 1 < α < m,

dmf(t)
dtm , for α = m.

(2.3)

m ∈ N and dmf(t)
dtm is the m-th derivative of the function f(t) with respect

to t.
A generalization of the Riemann-Liouville fractional derivative operator
(2.2) and Caputo fractional derivative operator (2.3) is given by Hilfer [20],
by introducing a fractional derivative operator of two parameters of order
0 < µ < 1 and type 0 ≤ ν ≤ 1 in the form

0+D
µ,ν
t (u(x, t)) = RL

0+It
ν(1−µ) ∂

∂t
(RL0+It

(1−ν)(1−µ)u(x, t))(2.4)

Observed that for ν = 0, (2.4) reduces to the classical Riemann-Liouville
fractional derivative operator (2.2). On the other hand, for ν = 1 it gives
the Caputo fractional derivative operator defined by (2.3).
The Laplace transform for this operator (Hilfer [20]) defined as

L{0+Dµ,ν
t (u(x, t)); s} = sµL{u(x, t)}−sν(µ−1)RL0+It(1−ν)(1−µ)u(x, 0+), (0 < µ < 1)

(2.5)
where the initial value term RL

0+It
(1−ν)(1−µ)u(x, 0+), involves the Riemann-

Liouville fractional integral operator of order (1 − ν)(1 − µ) evaluated in
the limit as t→ 0+.
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The composite fractional derivative appeared in the theoretical model-
ing of broadband dielectric relaxation spectroscopy for glasses (Hilfer [21]).
Kachhia and Prajapati [15] used composite fractional derivative to study
heat transfer through diathermanous materials. Saxena et al. ([23],[22])
obtained analytical solution of some non-linear equations with composite
fractional derivatives. Tomovski et al. [29] studied fractional diffusion
equation with composite fractional derivatives. Recently Dubbeldam et
al. [13] studied fractional Schrödinger equation with composite fractional
derivatives. Sandev et al. [26] obtained the solution of a fractional diffu-
sion equation with a Hilfer-generalized Riemann-Liouville time fractional
derivative and investigated the solution of generalized distributed order
diffusion equations with composite time fractional derivative in [27].

The two parameter Mittag-Leffler function (Wiman [7]) defined as

Eα,β(z) =
∞X
n=0

zn

Γ(αn+ β)
, α, β ∈ C, Re(α) > 0(2.6)

The Mittag-Leffler function is a direct generalization of the exponential
function to which it reduces for α = β = 1. For 0 < α < 1 it interpolates
between the pure exponential and a hypergeometric function 1

1−z ([5]). The
importance of Mittag-Leffler function is realized during the last two decades
due to its direct involvement in the problems of physics, biology, engineering
and applied sciences. It is naturally occurs as the solution of fractional order
differential equations or fractional order integral equations([16],[11]).

3. Formulation of Fractional Differential Equation Models for
Flow of Electricity in RL circuit

In this section, we developed the resistance-inductance circuit model (1.7)
in the form of fractional differential equation as

0+D
µ,ν
t (I(t)) +

R

L
I(t) =

E(t)

L
(3.1)

where 0+D
µ,ν
t (I(t)) is Hilfer type composite fractional derivative of I(t)

defined by (2.4). If we take µ→ 1 and ν = 1, then (3.1) reduces to classical
case (1.7) discussed in [19].

4. Solution of Problem

In this section, authors obtained the solution of various cases of the Resistance-
inductance circuit model (3.1).
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4.1. Zero electromotive force i.e E(t) = 0

0+D
µ,ν
t (I(t)) +

R

L
I(t) = 0(4.1)

the initial condition is

RL
0+It

(1−ν)(1−µ)I(0+) = I0,(4.2)

where I0 is constant. Applying Laplace transform on (4.2) and use of (2.5),
we get

sµĪ(s)− sν(µ−1)RL0+It
(1−ν)(1−µ)I(0+) +

R

L
Ī(s) = 0.(4.3)

use of (4.2), gives

Ī(s) = I0
sν(µ−1)

sµ + R
L

(4.4)

Inverse Laplace transform of (4.4) is given by (Purohit [24])

I(t) = I0t
µ+ν(1−µ)−1Eµ,µ+ν(1−µ)

µ
−R
L
tµ
¶

(4.5)

4.2. Constant electromotive force i.e. E(t) = E0

In this case (3.1) reduces to

0+D
µ,ν
t (I(t)) +

R

L
I(t) =

E0
L

(4.6)

and initial condition is

RL
0+It

(1−ν)(1−µ)I(0+) = I0.(4.7)

Applying Laplace transform on (4.6) and use of (2.5), we yield

sµĪ(s)− sν(µ−1)RL0+It
(1−ν)(1−µ)I(0+) +

R

L
Ī(s) =

E0
L

1

s
(4.8)

use of (4.7), gives

Ī(s) =
E0
L

1

s(sµ + R
L )
+ I0

sν(µ−1)

sµ + R
L

.(4.9)

Inverse Laplace transform of (4.9) gives

I(t) =
E0
R

µ
1−Eµ,1

µ
−R
L
tµ
¶¶

+ I0t
µ+ν(1−µ)−1Eµ,µ+ν(1−µ)

µ
−R
L
tµ
¶

(4.10)
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4.3. Constant electromotive force in terms of unit step function
applied i.e. E(t) = u(t)

In this case (3.1) becomes

0+D
µ,ν
t (I(t)) +

R

L
I(t) =

u(t)

L
(4.11)

and initial condition is

RL
0+It

(1−ν)(1−µ)I(0+) = I0.(4.12)

Applying Laplace transform on (4.11) and use of (2.5), leads to

sµĪ(s)− sν(µ−1)RL0+It
(1−ν)(1−µ)I(0+) +

R

L
Ī(s) =

1

L

1

s
(4.13)

use of (4.12), gives

Ī(s) =
1

L

1

s(sµ + R
L )
+ I0

sν(µ−1)

sµ + R
L

.(4.14)

Inverse Laplace transform of (4.9) yields

I(t) =
1

R

µ
1−Eµ,1

µ
−R
L
tµ
¶¶

+ I0t
µ+ν(1−µ)−1Eµ,µ+ν(1−µ)

µ
−R
L
tµ
¶

(4.15)

4.4. Periodic electromotive force i.e. E(t) = E0 sinωt

In this case (3.1) can be written in the form

0+D
µ,ν
t (I(t)) +

R

L
I(t) =

E0 sinωt

L
(4.16)

and initial condition is

RL
0+It

(1−ν)(1−µ)I(0+) = I0.(4.17)

Applying Laplace transform on (4.11) and use of (2.5), we get

sµĪ(s)− sν(µ−1)RL0+It
(1−ν)(1−µ)I(0+) +

R

L
Ī(s) =

E0
L

ω

s2 + ω2
(4.18)

Use of (4.17), gives

Ī(s) =
E0
L

1

sµ + R
L

ω

s2 + ω2
+ I0

sν(µ−1)

sµ + R
L

.(4.19)
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The inverse Laplace transform of (4.19), we arrived at

I(t) =
E0
L

tZ
0

τµ−1 sin(ω(t−τ))Eµ,µ

µ
−R
L
τµ
¶
dτ+I0t

µ+ν(1−µ)−1Eµ,µ+ν(1−µ)

µ
−R
L
τµ
¶

(4.20)

5. Results and Discussions

We get following graphs of time verses current for different values of ν.

We get following graphs of time verses current for different values of ν.

Marisol Martínez
fig1-fig2


Marisol Martínez
fig3-fig4
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