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604 A. Lourdusamy and J. Jenifer Steffi

1. Introduction

In this work it is considered undirected simple graphs that are connected.
For some other graph theoretical concepts the reader should refer to [1].
Throughout the text the letter v denotes a specified vertex of the underly-
ing graph.

Pebbling in graph was first suggested by Lagarias and Saks and it was
introduced in the literature by Chung [2]. She studied the pebbling number
of Cartesian product of paths to solve the following number theoretical
conjecture by Klietman and Lemke [3].

Conjecture 1.1. For any given integers a1, a2, ..., ad there is a non-empty
subset X ⊆ {1, 2, ..., d} such that d divides Pi∈X ai and

P
i∈X gcd(ai, d) ≤

d.

Graph pebbling problems are computationally complex mathematical
problems. Oversimplifying things a bit, computers can only solve graph
pebbling puzzles by using brute force methods, looking at every possible
configuration. Graph pebbling problems belong to a large class of problems
called NP-Complete. Put simply, these are problems whose best known al-
gorithms require an exponential amount of time to solve. Specifically, the
subject has grown into a network optimization model for the transporta-
tion of consumable resources. It analyzes whether it is possible to move
resources from one node to another by using minimum resources in the
transporting process. Thus it is very fluid and adaptable to various situa-
tions. Related pebbling models have found applications in computational
complexity, compiler theory, graph searching, sparse matrix factorization,
and computational geometry. To learn more about graph pebbling and its
applications, readers are directed to refer to [7] and [8].

Moreover, this can be viewed as an adversarial process: You are given a
graph and a set of pebbles to place wherever you wish on the graph. Your
adversary will choose any node on the graph he wishes. You then have to
move a pebble onto that chosen node. You will win if you can place the
pebbles such that it is possible to reach every node.

Formally, the theory of graph pebbling is moving one pebble to a des-
tined, but an arbitrary vertex v, for a given distribution of pebbles on the
vertices of G and also compute how many pebbles are necessary to guar-
antee that, from any configuration of that many pebbles, one can move a
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Pebbling on zig-zag chain graph of n odd cycles 605

pebble to (solve) any particular vertex. Let D be a distribution of pebbles
on the vertices of G. Let p(v) denote the number of pebbles distributed
on the vertex v and let p(G) =

P
v∈V (G) p(v). The operation of pebbling

movement is called a pebbling step, defined as removing two pebbles from
a vertex and adding one on an adjacent vertex. The following definitions
will be introduced in order to understand the pebbling concepts.

Definition 1.2. [2, 6] We define the t-pebbling number of v in G is the
smallest number ft(G, v) such that from every placement of ft(G, v) peb-
bles, it is possible to move t pebbles to v. For t = 1, we have the pebbling
number of a vertex v in G denoted by f(G, v) such that, it is possible to
move a pebble to v by a sequence of pebbling moves.

Definition 1.3. [2, 6] The t-pebbling number of G is the smallest number,
ft(G), such that from any placement of ft(G) pebbles, it is possible to move
t pebbles to any specified, but an arbitrary vertex, by a sequence of pebbling
moves. Thus, ft(G) is the maximum value of ft(G, v) over all vertices v.
For t = 1, we can get the pebbling number of G, denoted by f(G). It is the
maximum value of f(G, v) over all vertices v. Thus we can move a pebble
to any arbitrary vertex by a sequence of pebbling moves.

With regard to pebbling number and t−pebbling number of various
classes of graphs, we invite the readers to refer to [2, 4, 9, 10], and [11]. Mo-
tivated by these works, we compute the pebbling number and the t−pebbling
number of zig-zag chain graph of n copies of odd cycles. This paper is or-
ganized as follows. In Section 2, we define the zig-zag chain graph of n
copies of odd cycles, ZZn(C2k+1), and present some important lemmas to
prove the main results. In Section 3, we provide the pebbling number of
ZZn(C2k+1), for some odd cycles C2k+1, 1 < k < 6 and in Section 4, we
determine the t−pebbling number for the same.

2. Preliminaries

In this section, we provide some important facts and set up notations and
terminologies. Initially, we proceed with the study of zig-zag stucture
which can be found in study of nano tube related concepts in chemistry
for hexagon type. We have noted that hexagon cycle is included in study-
ing zig-zag chain graph of n copies of even cycles [14]. Here, we focus on the
zig-zag chain graph of n copies of odd cycles. In [15], the authors proved
that this graph satisfied the 2t-pebbling property. In this paper, we are
going to compute the t-pebbling number for the same.
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606 A. Lourdusamy and J. Jenifer Steffi

Definition 2.1. [15] The zig-zag chain graph of n copies of odd cycles
denoted by ZZn(C2k+1), is a graph which consists of zig-zag sequence of
n copies of odd cycles, C2k+1 with k ≥ 2. We define ZZn(C2k+1) as follows.

Case (i) When n is even.
The vertex set of ZZn(C2k+1) is

V (ZZn(C2k+1)) = {ai, bi : 1 ≤ i ≤ n
2 (2k − 1)} ∪ {x, y}.

The edge set of ZZn(C2k+1) is

E(ZZn(C2k+1)) = {aiai+1, bibi+1 : 1 ≤ i ≤ n
2 (2k − 1)− 1}∪

{xa1, xb1, yan
2
(2k−1), ybn

2
(2k−1)}∪

{ai(2k−1)−(k−1)bi(2k−1)−(k−1), aj(2k−1)bj(2k−1)+1 :

1 ≤ i ≤ n
2 , 1 ≤ j ≤ n−2

2 }.

Case (ii) When n is odd.
The vertex set of ZZn(C2k+1) is

V (ZZn(C2k+1)) = {ai, bi : 1 ≤ i ≤
³
nk − n+1

2

´
} ∪ {x, y, z}.

The edge set of ZZn(C2k+1) is

E(ZZn(C2k+1)) = {aiai+1, bibi+1 : 1 ≤ i ≤
³
nk − n+1

2

´
− 1}∪

{xa1, xb1, ya(nk−n+1
2 )

, yz, zb(nk−n+1
2 )
}∪

{ai(2k−1)−(k−1)bi(2k−1)−(k−1), aj(2k−1)bj(2k−1)+1 : 1 ≤ i, j ≤ n−1
2 }.
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Pebbling on zig-zag chain graph of n odd cycles 607

The Figure 1.1 depicts the zig-zag chain graph of n copies of C5.

The reader can easily view that the above graph ZZn(C5) has n copies
of C5, and we label each cycle as A1, A2, ..., and An in order from left to
right. Let S be any subgraph of ZZn(C2k+1) and let hZZn(C2k+1)− Si be
the induced subgraph of the graph ZZn(C2k+1), obtained by removing a
vertex set of the subgraph S from the vertex set of the graph ZZn(C2k+1).
We state below some results on graph pebbling which will be used in our
discussion.

Lemma 2.2. [2] The pebbling number of a graph G satisfies,

f(G) ≥ max{2diam(G), |V (G)|}, where diam(G) is the diameter of the
graph G.

Lemma 2.3. [11] Let Pn be the path with n vertices. Then

ft(Pn) = t2n−1.

Lemma 2.4. [11] Let Cn denote a simple cycle with n vertices, where
n ≥ 3. Then

ft(Cn) =

⎧⎪⎨⎪⎩
t2k, n=2k

2k+2−(−1)k+2
3 + (t− 1)2k, n=2k+1.

Theorem 2.5. [14] In a zig-zag chain graph of n copies of even cycles C2k,
denoted by ZZn(C2k) with a specified vertex v, the following are true for
k ≥ 3.

Marisol Martínez
figure1-1
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608 A. Lourdusamy and J. Jenifer Steffi

1. If 2n(k−1)+1 pebbles are assigned to the vertices of the graph ZZn(C2k),
one pebble can be moved to v.

2. Let q be the number of vertices with at least one pebble. If there are
all together more than 2(2n(k−1)+1)−q pebbles, then two pebbles can
be moved to v.

Lemma 2.6. Let ZZ2(C2k+1) be the zig-zag chain graph of two copies of

odd cycles. If more than 22k − (2
k+2−(−1)k+2

3 ) pebbles are distributed only
on the vertices of A1, then we can move at least 2

k−1 pebbles to the vertex
ak.

Proof. Consider the graph ZZ2(C2k+1) with at least 2
2k−(2

k+2−(−1)k+2
3 )+

1 pebbles distributed only on the vertices of A1. We have to move at least

2k−1 pebbles to the vertex ak. Recall that ft(C2k+1) ≥ (2
k+2−(−1)k+2

3 ) +
2k(t− 1). We have the following claim to prove Lemma 2.6.

Claim(1). 22k − (2
k+2−(−1)k+2

3 ) + 1 ≥ (2
k+2−(−1)k+2

3 ) + 2k(2k−1 − 1).

We have,

22k − 2(2
k+2−(−1)k+2

3 )− 2k(2k−1 − 1) + 1 > 2k(2k−1 + 1)− 2(2
k+2−(−1)k+2

3 )

= 1
3

h
3.2k(2k−1 + 1)− 2(2k+2 − (−1)k+2)

i
≥ 1

3

h
3.2k(2k−1 + 1)− 2k+3 − 2

i
> 2

3(2
k−1 − 1), since k ≥ 2

≥ 0.

Therefore, we can move 2k−1 pebbles to the vertex ak, which completes the
proof of the lemma.
2

Lemma 2.7. Let ZZ3(C2k+1) be the zig-zag chain graph of three copies

of odd cycles. If more than 23k−1 + 3k − 2 − (2
k+2−(−1)k+2

3 ) pebbles are
distributed on the vertices of A1 ∪ A2, then we can move at least 2

k−1

pebbles to the vertex a2k−1.

rvidal
Cuadro de texto
602

Scielo
Rectángulo



Pebbling on zig-zag chain graph of n odd cycles 609

Proof. Consider the graph ZZ3(C2k+1) with more than 2
3k−1+3k−2−

(2
k+2−(−1)k+2

3 ) pebbles distributed only on the vertices of A1∪A2. We have
to move at least 2k−1 pebbles to the vertex a2k−1. Suppose that more than

22k− (2
k+2−(−1)k+2

3 ) pebbles are distributed on the vertices of A2. Then by
Lemma 2.6, we can move at least 2k−1 pebbles to the vertex a2k−1. There-

fore, assume that at most 22k − (2
k+2−(−1)k+2

3 )− 1 pebbles are distributed
on A2. Then at least 2

3k−1+3k−2k−1 pebbles are retained on the vertices
of A1. We claim the following:

Claim(2). 23k−1 + 3k − 22k − 1 ≥ (2
k+2−(−1)k+2

3 ) + 2k(22k−2 − 1).

We have,

23k−1 − 22k + 3k − 1− (2
k+2−(−1)k+2

3 )− 2k(22k−2 − 1)

> 23k−2−2k(2k−1)+3k−2k+1−1, since (2
k+2−(−1)k+2

3 ) < 2k+1

= 2k−2(22k − 2k+2 − 4) + 3k − 1

≥ 22k − 2k+2 + 3k − 5

≥ 3k − 5

> 0, since k ≥ 2.

Hence p(A1) ≥ (2
k+2−(−1)k+2

3 ) + 2k(22k−2 − 1). Therefore, we can move
at least 22k−2 pebbles to the vertex ak. Now, we have the path P :
ak, ak+1, ..., a2k−1 of length k − 1 with at least 22k−2 pebbles. Then by
Lemma 2.3, we can move 2k−1 pebbles to the vertex a2k−1, which com-
pletes the proof. 2

Lemma 2.8. Let ZZn(C2k+1) be the zig-zag chain graph of n copies of
odd cycles. Then the following are true.

1. For n = 2m,m ≥ 1, we can move at least 2k−1 pebbles to the ver-
tex a(m−1)(k−1)+mk, when p(hZZ2m(C2k+1)−A2mi) ≥ 2m(2k−1)+1 −
(2

k+2−(−1)k+2
3 ) + 1.

2. For n = 2m + 1,m ≥ 1, we can move at least 2k−1 pebbles to the
vertex am(2k−1), when p(hZZ2m+1(C2k+1)−A2m+1i) ≥ 2(2m+1)k−m+
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610 A. Lourdusamy and J. Jenifer Steffi

k(2m+ 1)− (m+ 1)− (2
k+2−(−1)k+2

3 ) + 1.

Proof. We proceed by induction on m. For m = 1, the result fol-
lows from Lemma 2.6 and Lemma 2.7. Assume that the result is true for
m0 < m. We have to prove the lemma for m > 1. Consider the graph
ZZn(C2k+1) with given number of pebbles according to the choice of n.
We have to move at least 2k−1 pebbles to the vertex a(m−1)(k−1)+mk, if n
is even, otherwise to the vertex am(2k−1). We consider the following cases:

Case (1). n = 2m, m ≥ 1.
Consider the graph ZZ2m(C2k+1) with more than 2

m(2k−1)+1−(2
k+2−(−1)k+2

3 )
pebbles distributed only on the vertices of hZZ2m(C2k+1)−A2mi. Suppose
that the subgraph S = hA2 ∪A3 ∪ ... ∪A2m−1i of ZZ2m(C2k+1) has at least
2k(2m−1)−m+1+k(2m−1)−m−(2

k+2−(−1)k+2
3 )+1 pebbles . Then by induc-

tion, we can put at least 2k−1 pebbles to the vertex a(m−1)(k−1)+mk. Now,

assume that the subgraph S has at most 2k(2m−1)−m+1+ k(2m− 1)−m−
(2

k+2−(−1)k+2
3 ) pebbles. We claim the following:

Claim(3). p(hZZ2m(C2k+1)−A2mi)−p(S) ≥ (2
k+2−(−1)k+2

3 )+2k(2m(2k−1)−k−
1).

We have,

2m(2k−1)+1−(2k(2m−1)−m+1+k(2m−1)−m)−(2
k+2−(−1)k+2

3 )−2m(2k−1)+2k

≥ 2m(2k−1)(1− 1
2k−1

)−2k− 2mk+k+m

≥ 2mk2m(k−1)

2k−1 − 2k − 2mk + k +m

> 2k(2m − 1)− 2mk + k +m

≥ 2k+m−1 − 2mk + k +m

> 0, since 2k+m−1 ≥ 2mk.

Hence p(A1) ≥ (2
k+2−(−1)k+2

3 ) + 2k(2m(2k−1)−k − 1). Therefore, we can
move at least 2m(2k−1)−k pebbles to the vertex ak. Then by using the path
P 0 : ak, ak+1, ..., a(m−1)(k−1)+mk, we can move 2

k−1 pebbles to the vertex
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Pebbling on zig-zag chain graph of n odd cycles 611

a(m−1)(k−1)+mk. This completes the proof of Case (1).

Case (2). n = 2m+ 1, m ≥ 1.
Consider the graph ZZ2m+1(C2k+1) with at least 2

k(2m+1)−m+k(2m+1)−
m− (2

k+2−(−1)k+2
3 ) pebbles distributed only on the vertices of

hZZ2m+1(C2k+1)−A2m+1i. Suppose that the subgraph
S0 = hA2 ∪A3 ∪ .... ∪A2mi has more than 2m(2k−1)+1− (2

k+2−(−1)k+2
3 ) peb-

bles. Then by induction, we can move at least 2k−1 pebbles to the vertex
am(2k−1). Otherwise, we have the following claim to calculate the number
of pebbles retained on A1.

Claim(4). p(hZZ2m+1(C2k+1)−A2m+1i)−p(S0) ≥ (2
k+2−(−1)k+2

3 )+2k(22mk−m−1−
1).

We have,

p(hZZ2m+1(C2k+1)−A2m+1i)− p(S0)− (2
k+2−(−1)k+2

3 )− 2k(22mk−m−1− 1)
≥ 22mk−m(2k−1−2)−2k+m(2k−1)+k

≥ 22mk−m−2k+m(2k−1)+k, for k ≥ 3

≥ 0, since 22mk−m ≥ 2k, k ≥ 3.

For k = 2, (2k−1 − 2) = 0 and m(2k − 1) + k ≥ 2k. Thus the claim is true
for all k ≥ 2.

Therefore, we can move at least 22mk−m−1 pebbles to the vertex ak,
by using the t−pebbling number of the odd cycle on A1. Now, we can
move at least 2k−1 pebbles to the vertex am(2k−1) by using the path P 00 :
ak, ak+1, ..., am(2k−1). This completes the proof of Case (2).
2

3. Pebbling number

In this section, we find the pebbling number of the zig-zag chain graph of
n copies of odd cycles.

Theorem 3.1. Let ZZ2(C2k+1) be the zig-zag chain graph of two copies
of odd cycles. Then for k ≥ 2, f(ZZ2(C2k+1)) = 22k.
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612 A. Lourdusamy and J. Jenifer Steffi

Proof. Put 22k − 1 pebbles on the vertex x. Then we can not reach
the vertex y, since the diameter of the graph ZZ2(C2k+1) is 2k. Consider
the graph ZZ2(C2k+1) with a distribution of at least 2

2k pebbles on its
vertices. Let v be our specified vertex. Without loss of generality, assume
that v ∈ A2. We consider the following cases:

Case (3). v ∈ V (A2)− {y}.
Assume that p(A2) < (

2k+2−(−1)k+2
3 )− 1. Then more than

22k − (2
k+2−(−1)k+2

3 ) pebbles are retained on the vertices of the subgraph
hZZ2m(C2k+1)−A2i. By Lemma 2.6, we can reach any specified vertex
except the vertex y.

Case (4). v = y is the target vertex.
We have two paths A : a1, a2, ...., a2k−1, y and A0 : b1, b2, ...., z, y. If A or A0

has at least 22k−1 pebbles, then we are done. So, we assume that both A
and A0 have at most 22k−1 − 1 pebbles. Thus, we have the following:

p(A) ≤ 22k−1 − 1 and

p(A0) ≤ 22k−1 − 1.

Then the remaining number of pebbles are retained on the vertex x.
Now, we apply the pebbling steps and move the pebbles from the vertex x
either to the path A or to the path A0. Then we must have,

p(x)
2 + p(A) ≥ 22k−1 or

p(x)
2 + p(A0) ≥ 22k−1.

Otherwise, p(x) + p(A) + p(A0) < 22k, which is a contradiction to the total
number of pebbles distributed on the vertices of the graph. 2

Theorem 3.2. Let ZZ3(C2k+1) be the zig-zag chain graph of three copies
of odd cycles. Then for 1 < k < 6, f(ZZ3(C2k+1)) = 2

3k−1 + 3k − 2.

Proof. Put 23k−1 − 1 pebbles on the vertex x, and put one pebble on
each bi’s, where 1 ≤ i ≤ 3k − 2. In this distribution, we cannot reach the
vertex y. Consider the graph ZZ3(C2k+1) with a distribution of at least
23k−1 + 3k − 2 pebbles on its vertices. We have to move a pebble to any
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Pebbling on zig-zag chain graph of n odd cycles 613

arbitrary vertex v ∈ Ap, 1 ≤ p ≤ 3. We consider the following cases:

Case (5). v ∈ A2.
Suppose p(A2∪A3) ≥ 22k. Then by Theorem 3.1, we can pebble the vertex
v. Assume that at most 22k − 1 pebbles are distributed on the vertices
of the subgraph A2 ∪ A3. Then the number of pebbles distributed on the
vertices of A1 is at least 2

2k. Clearly, p(A1∪A2) > 22k. Again by Theorem
3.1, we can move a pebble to the vertex v.

Case (6). v ∈ A1 or A3.
Without loss of generality, let us assume that v ∈ A3 and

p(A3) ≤ (2
k+2−(−1)k+2

3 ) − 1. Then the remaining number of pebbles dis-
tributed only on the vertices of the subgraph A1 ∪ A2 is at least 23k−1 +
3k − 1 − (2

k+2−(−1)k+2
3 ). Let v ∈ V (A3) − {y, z}. Then by Lemma 2.7,

we can easily reach the vertex v. Now, assume that v ∈ {y, z}. Without
loss of generality, take v = y. We have two paths B : ak, ak+1, ..., a3k−2, y
and B0 : bk+1, bk+2, ..., z, y each of length 2k − 1. Suppose p(B) ≥ 22k−1 or
p(B0) ≥ 22k−1. Then we are done. Therefore, assume that, p(B) ≤ 22k−1−1
and p(B0) ≤ 22k−1−1. Without loss of generality, assume that all the peb-
bles are distributed on A1. We have the following claim to pebble the vertex
y.

Claim(5). 23k−1 + 3k − 2 ≥
µ
2k+2−(−1)k+2

3

¶
+ 2k

³
22k−1 − 1

´
.

We have,

23k−1 + 3k − 2−
µ
2k+2−(−1)k+2

3

¶
− 2k

³
22k−1 − 1

´
= 3k + 2k −

µ
2k+2−(−1)k+2

3

¶
− 2.

For all k < 6,

2k + 3k ≥
µ
2k+2−(−1)k+2

3

¶
+ 2.

Hence p(A1) ≥
µ
2k+2−(−1)k+2

3

¶
+ 2k

³
22k−1 − 1

´
. Now, we can move

22k−1 pebbles to the vertex ak, and then we move a pebble to the vertex y.
2

rvidal
Cuadro de texto
607

Scielo
Rectángulo



614 A. Lourdusamy and J. Jenifer Steffi

Theorem 3.3. Let ZZn(C2k+1) be the zig-zag chain graph of n copies of
odd cycles. Then the following are true.

1. For n = 2m, m ≥ 1 and 1 < k < 6,

f(ZZ2m(C2k+1)) = 2
m(2k−1)+1.

2. For n = 2m+ 1, m ≥ 1 and 1 < k < 6,

f(ZZ2m+1(C2k+1)) = 2
(2m+1)k−m + (2m+ 1)k − (m+ 1).

Proof. For n = 2m, m ≥ 1, by placing 2m(2k−1)+1 − 1 pebbles on the
vertex x, we cannot reach the vertex y. For n = 2m+ 1 m ≥ 1, by placing
2(2m+1)k−m− 1 pebbles on the vertex x and one pebble on each bi, we can-
not reach the vertex y.

We proceed by induction on m. For m = 1, the result follows from Theo-
rem 3.1 and Theorem 3.2. Assume that the result is true for m0 < m. Let
v ∈ Ap, 1 ≤ p ≤ n. We consider the following cases:

Case (7). n is even. ie., n = 2m,m ≥ 2.
Consider the graph ZZ2m(C2k+1) with a distribution of at least 2

m(2k−1)+1

pebbles on its vertices. We consider the following subcases:

Subcase 7(a). p is odd and 1 < p < n.
Let n = 2m, and m ≥ 2. Then the graph ZZ2m(C2k+1) can be par-
titioned into two subgraphs say M1 and M2, where M1

∼= ZZp(C2k+1),
M2
∼= ZZs(C2k+1) and 2m = p+s−1. Put p = 2p0+1, and s = 2s0. Clearly,

v ∈ Ap ⊆ M1 ∩M2. Suppose p(M1) ≥ 2(2p
0+1)k−p0 + (2p0 + 1)k − (p0 + 1).

Then we are done. Suppose p(M2) < 2(2p
0+1)k−p0 + (2p0 + 1)k − (p0 + 1).

Now, we claim the following:

Claim(6). p(ZZ2m(C2k+1))− p(M1) ≥ 2s
0(2k−1)+1.

Now, p(ZZ2m(C2k+1))− p(M1)− 2s
0(2k−1)+1

= 22p
0k−p0(22s

0k−s0 − 2k) + 22s0k−s0(22p0k−p0 − 2)− (2p0 + 1)k + p0
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Pebbling on zig-zag chain graph of n odd cycles 615

> 22p
0k−p0 + 22s

0k−s0 − 2p0k+1

> 22s
0k−s0

> 0.

This implies that p(M2) ≥ 2s
0(2k−1)+1. Therefore, we can reach the vertex v.

Subcase 7(b). p is even and 1 < p < n.
Put p = 2p0. Then we get that s = 2s0 + 1. Suppose p(M1) ≥ 2p

0(2k−1)+1.
Then we can pebble the target. Therefore, assume that p(M1) ≤ 2p

0(2k−1)+1−
1.

Claim(7). p(ZZ2m(C2k+1))− p(M1) ≥ 2(2s
0+1)k−s0 + (2s0 + 1)k − s0.

The reader can easily verify that the claim follows from Claim (6).

Subcase 7(c). p = 1 or p = n.

Without loss of generality, assume that v ∈ An and p(An) ≤
µ
2k+2−(−1)k+2

3

¶
−

1. Let v ∈ V (An) − {y}. Then by Lemma 2.8, we can easily pebble the
target. Take v = y. We have two paths C : a1, a2, ..., y and C0 : b1, b2, ..., y.
If C or C 0 has at least 2m(2k−1) pebbles, then we can reach the target.
Therefore assume that,

p(C) ≤ 2m(2k−1) − 1 and

p(C 0) ≤ 2m(2k−1) − 1.

Then the remaining pebbles are retained on the vertex x. Now, we ap-
ply the pebbling steps and move the pebbles from the vertex x to the path
C or to the path C 0. We must have,

p(x)
2 + p(C) ≥ 2m(2k−1) or

p(x)
2 + p(C 0) ≥ 2m(2k−1).

Otherwise, p(x) + p(C) + p(C 0) < 2m(2k−1)+1, which is a contradiction
to the total number of pebbles distributed on the vertices of the graph.
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Case (8). n is odd. ie., n = 2m+ 1,m ≥ 2.
Let n = 2m + 1. Consider the graph ZZ2m+1(C2k+1) with a distribu-
tion of at least 2(2m+1)k−m + (2m+ 1)k − (m+ 1) pebbles on its vertices.
Let v ∈ Ap, 1 ≤ p ≤ n. We partition the graph ZZ2m+1(C2k+1) into
two subgraphs, say M1

∼= ZZp(C2k+1), and M2
∼= ZZs(C2k+1). Clearly,

M1 ∩M2
∼= Ap. We consider the following subcases to pebble the target.

Subcase 8(a). p is odd and 1 < p < n.
Put 2m+1 = (2p0+1)+(2s0+1)−1. Then we get thatm = p0+s0. Here p =
2p0+1 and s = 2s0+1. Suppose p(M1) ≤ 2(2p

0+1)k−p0+(2p0+1)k−(p0+1)−1.
We claim the following:

Claim(8). p(ZZ2m+1(C2k+1))− p(M1) ≥ 2(2s
0+1)k−s0 +(2s0+1)k− (s0+1).

Now,

2(2m+1)k−m−2(2p0+1)k−p0 −2(2s0+1)k−s0 +(2m+1)k− (2p0+1)k− (2s0+1)k

= 2(2p
0+2s0+1)k−p0−s0 − 2(2p0+1)k−p0 − 2(2s0+1)k−s0 − k

= 2k(2p
0(2k−1).2s

0(2k−1) − 2p0(2k−1) − 2s0(2k−1))− k

> 2k − k

> 0, since, 2p
0(2k−1).2s

0(2k−1) − 2p0(2k−1) − 2s0(2k−1) > 0.

Hence p(M2) ≥ 2(2s
0+1)k−s0 + (2s0+1)k− (s0+1). Therefore, we can reach

the vertex v by induction.

Subcase 8(b). p is even and 1 < p < n.
Put 2m + 1 = 2p0 + 2s0 − 1. Here p = 2p0 and s = 2s0. Suppose
p(M1) ≥ 2p

0(2k−1)+1. Then we can reach the vertex v. Therefore assume
that p(M1) ≤ 2p

0(2k−1)+1 − 1. We claim the following:

Claim(9). p(ZZ2m+1(C2k+1))− p(M1) ≥ 2s
0(2k−1)+1.

We have,
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2(2p
0+2s0−1)k−(p0+s0−1) − 2p0(2k−1)+1 − 2s0(2k−1)+1 +m(2k − 1) + k − 1

> 22p
0k−p0(22s

0k−s0−k − 2) + 22s0k−s0(22p0k−p0−k − 2)

> 22p
0k−p0(2s

0 − 2) + 22s0k−s0(2p0 − 2)

≥ 0.

Hence, p(M2) ≥ 2s
0(2k−1)+1, so we are done.

Subcase 8(c). v ∈ Ap and p = 1 or p = n.
Let us assume that, v ∈ An. Let v ∈ V (Ap) − {y, z}. Then by Lemma
2.8, we can easily reach the vertex v. Let v ∈ {y, z}. Without loss of
generality, assume that v = y. We have two paths D : ak, ak+1, ..., y and
D0 : bk+1, bk+2, ..., z, y each of length (2k − 1)m. Suppose p(D) ≥ 2(2k−1)m
or p(D0) ≥ 2(2k−1)m. Then we can pebble the vertex y. So assume that
p(D) ≤ 2(2k−1)m − 1 and p(D0) ≤ 2(2k−1)m − 1. Without loss of generality,
assume that all the pebbles are distributed on A1.

Claim(10). p(A1) ≥
µ
2k+2−(−1)k+2

3

¶
+ 2k(2m(2k−1) − 1).

Now we have,

2(2m+1)k−m + (2m+ 1)k − (m+ 1)−
µ
2k+2−(−1)k+2

3

¶
− 2k(2m(2k−1) − 1)

= 2k + (2m+1)k−
µ
2k+2−(−1)k+2

3

¶
− (m+1).

We can easily verify that for all k < 6,

2k + (2m+ 1)k ≥
µ
2k+2−(−1)k+2

3

¶
− (m+ 1).

Hence, we can move a pebble to the vertex y.

2

4. t- Pebbling Number

In this section, we determine the t-pebbling number of zig-zag chain graph
of n copies of odd cycles.
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Theorem 4.1. Let ZZn(C2k+1), k ≥ 2 be the zig-zag chain graph of n
copies of odd cycles.

1. For n = 2m,m ≥ 1, we have, ft(ZZ2m(C2k+1)) = t.2m(2k−1)+1.

2. For n = 2m+1,m ≥ 1, we have, ft(ZZ2m+1(C2k+1)) = t.2(2m+1)k−m+
(2m+ 1)k − (m+ 1).

Proof. 1. Place t.2m(2k−1)+1−1 pebbles on the vertex x, we cannot put
t pebbles on the vertex y.
Consider the graph ZZ2m(C2k+1) with a distribution of at least t.2

m(2k−1)+1

pebbles on its vertices. We prove this theorem by induction on t. For t = 1,
the result follows from the Theorem 3.3. Assume that the result is true for
t0 < t. Let v ∈ Ap, 1 ≤ p ≤ 2m, be any target vertex. We have to move t
pebbles to the vertex v. Consider the following cases:

Case (9). p(v) = 0.
We can move one pebble to the vertex v at a cost of at most 2m(2k−1)+1

pebbles. Then the number of pebbles remaining in ZZ2m(C2k+1) is at least
(t−1)2m(2k−1)+1. Thus by induction, we can move t−1 additional pebbles
to v.

Case (10). p(v) = l, 1 ≤ l ≤ t− 1 and t ≥ 2.
We have to move t− l additional pebbles to the vertex v.

Now, ft(ZZ2m(C2k+1))− l = t.2m(2k−1)+1 − l

≥ (t− l + l)2m(2k−1)+1 − l

= (t− l)2m(2k−1)+1 + l2m(2k−1)+1 − l

> (t− l)2m(2k−1)+1

= ft−l(ZZ2m).

By induction, we can move t− l additional pebbles to the vertex v.

2. Place t.2(2m+1)k−m − 1 pebbles on the vertex x and put one pebble on
each bi. We cannot move t pebbles to the vertex y.
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Consider the graph ZZ2m+1(C2k+1) with a distribution of at least t.2
(2m+1)k−m+

(2m+ 1)k − (m+ 1) pebbles on its vertices. We prove this theorem by in-
duction on t. Let v ∈ Ap, 1 ≤ p ≤ 2m+ 1. We have the following cases:

Case (11). p(v) = 0.
The graph ZZ2m+1(C2k+1) can be partitioned into two subgraphs say,
M1
∼= ZZp(C2k+1) and M2

∼= ZZs(C2k+1), where M1 ∩M2
∼= Ap.

Subcase 11(a). v ∈ Ap, p is even and 1 < p < 2m+ 1.
Put 2m + 1 = 2p0 + 2s0 − 1, where p = 2p0 and s = 2s0. Suppose
p(M1) ≥ t.2p

0(2k−1)+1. Then we are done. Therefore assume that p(M1) ≤
t.2p

0(2k−1)+1 − 1. We claim the following:

Claim(11). p(ZZ2m+1(C2k+1))− p(M1) ≥ t.2s
0(2k−1)+s0+1.

We have,

t.2(2m+1)k−m + (2m+ 1)k − (m+ 1)− (t.2p0(2k−1)+1 − 1)− t.2s
0(2k−1)+1

> t.22p
0k−p0(2(2s

0−1)k−s0 − 2) + t.22s
0k−s0(2(2p

0−1)k−p0 − 2)

> 0, since s0 ≥ 1 and p0 ≥ 1.

Hence, P (ZZs(C2k+1)) ≥ t.2s
0(2k−1)+s0+1. Therefore, we can pebble the

vertex v.

Subcase 11(b). v ∈ Ap, p is odd, and 1 < p < 2m+ 1,m ≥ 1.
Put 2m+ 1 = (2p0 + 1) + (2s0 + 1)− 1, where p = 2p0 + 1 and s = 2s0 + 1.
Suppose P (M1) ≥ t.2(2p

0+1)k−p0 + (2p0 + 1)k − (p0 + 1). Then we are done.
Now, assume that P (M1) ≤ t.2(2p

0+1)k−p0 + (2p0 + 1)k − (p0 + 1) − 1. We
claim the following:

Claim(12). p(ZZ2m+1(C2k+1))−p(M1) ≥ t.2(2s
0+1)k−s0+(2s0+1)k−(s0+1).

We have,

p(ZZ2m+1(C2k+1))− p(M1)− t.2(2s
0+1)k−s0 − (2s0 + 1)k + (s0 + 1)

> t.2(2p
0+2s0+1)k−p0−s0 − t.2(2p

0+1)k−p0 − t.2(2s
0+1)k−s0
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