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558 R. Murali and A. Ponmana Selvan

1. Introduction

The study of stability problem for various functional equations originated
from a famous talk of S. M. Ulam [1]. In 1940, Ulam [1] posed a problem
concerning the stability of functional equations: “Give Conditions in order
for a linear function near an approximately linear function to exist.” Since
then, this question has attracted the attention of many researchers. Note
that first solution to this question was given by Hyers [2] in 1941. He made a
significant breakthrough, when he gave an affirmative answer to the Ulam’s
problem for additive functions defined on Banach Spaces. Thereafter, the
result by Hyers [2] was generalized by Rassias [3], Aoki [4] and Bourgin
[5]. After then, many Mathematicians have extended the Ulam’s problem
to other functional equations and generalized the Hyers results in various
directions (see [6, 7, 8]).

Definition of Hyers-Ulam stability have applicable significance since it
means that if one is studying the Hyers-Ulam stable system then one does
not have to reach the exact solution. (Which usually is quite difficult or time
consuming). This is quite useful in many applications, for example Fluid
Dynamics, Numerical Analysis, Optimization, Biology, and Economics etc.,
where finding the exact solution is quite difficult. It also helps if the stochas-
tic effects are small, to use deterministic model to approximate a stochastic
one. It is very important to note that there are many other applications
for Hyers-Ulam stability in other areas like, nonlinear analysis problems
including partial differential equation and integral equations.

The theory of stability is an important branch of the qualitative the-
ory of differential equations. The generalization of Ulam’s problem was
recently proposed by replacing functional equations with differential equa-

tions: The differential equation φ
³
f, x, x

0
, x

00
, ... x(n)

´
= 0 has the Hy-

ers - Ulam stability if for a given > 0 and a function x such that¯̄̄
φ
³
f, x, x

0
, x

00
, ... x(n)

´¯̄̄
≤ , there exists a solution xa of the differen-

tial equation such that |x(t)− xa(t)| ≤ K( ) and lim
→0

K( ) = 0. Obloza

seems to be the first author who investigated the Hyers-Ulam stability of
linear differential equation [9]. Thereafter, Alsina and Ger [10] published
their papers, which handles the Hyers-Ulam stability of the linear differ-
ential equation y

0
(t) = y(t). The result obtained by Alsina and Ger was

generalized by Takahasi et. al., [11] to the case of the complex Banach
Space valued differential equation y

0
(t) = λ y(t), (see also [12, 13]).

Now a days, the Hyers-Ulam stability of ordinary differential equations
has been investigated (see [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
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Hyers-Ulam stability of nth order linear differential equation 559

29, 30, 31, 32, 33]) and the investigation is going on. In this paper, our
main aim is to investigate the Hyers-Ulam stability and Hyers-Ulam-Rassias
stability of the nth order homogeneous linear differential equation

x(n)(t)+an−1(t) x
(n−1)(t)+...+a2(t) x

00(t)+a1(t) x
0(t)+(a0(t)− p(t)) x(t) = 0

(1.1)
with initial conditions

x(a) = x0(a) = x00(a) = ... = x(n−1)(t) = 0,(1.2)

and with boundary conditions

x(a) = x(b) = 0,(1.3)

for all t ∈ I, x(t) ∈ Cn(I), p(t) ∈ C0(I) and ai(t) ∈ C(I), i = 0, 1, 2, ..., n−
1. Where I = [a, b] ⊆ R, p > 0 and p(t) is a bounded for all sufficiently
large t in R.

2. Preliminaries

Firstly, we give the definitions of Hyers-Ulam stability and Hyers-Ulam-
Rassias stability for the differential equation (1.1) with initial and boundary
conditions (1.2) and (1.3) respectively.

Definition 2.1. We say that the differential equation (1.1) has the Hyers-
Ulam stability with initial conditions (1.2), if there exists a constant K > 0
such that for every > 0, x ∈ Cn(I), if¯̄̄
x(n)(t) + an−1(t) x

(n−1)(t) + ...+ a2(t) x
00(t) + a1(t) x

0(t) + (a0(t)− p(t)) x(t)
¯̄̄
≤ ,

with x(a) = x0(a) = x00(a) = ... = x(n−1)(t) = 0, then there exists some
y(t) ∈ Cn(I) satisfying the differentail equation

y(n)(t)+an−1(t) y
(n−1)(t)+...+a2(t) y

00(t)+a1(t) y
0(t)+(a0(t)− p(t)) y(t) = 0,

with y(a) = y0(a) = y00(a) = ... = y(n−1)(t) = 0, such that |x(t)− y(t)| ≤
K .
We call such K as a Hyers-Ulam stability constant for the differential equa-
tion (1.1) with (1.2).
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560 R. Murali and A. Ponmana Selvan

Definition 2.2. We say that the differential equation (1.1) has the Hyers-
Ulam stability with boundary conditions (1.3), if there exists a constant
K > 0 such that for every > 0, x ∈ Cn(I), if¯̄̄
x(n)(t) + an−1(t) x

(n−1)(t) + ...+ a2(t) x
00(t) + a1(t) x

0(t) + (a0(t)− p(t)) x(t)
¯̄̄
≤ ,

with x(a) = x(b) = 0, then there exists some y(t) ∈ Cn(I) satisfying the
differentail equation

y(n)(t)+an−1(t) y
(n−1)(t)+...+a2(t) y

00(t)+a1(t) y
0(t)+(a0(t)− p(t)) y(t) = 0,

with y(a) = y(b) = 0, such that |x(t)− y(t)| ≤ K .
We call such K as a Hyers-Ulam stability constant for the differential equa-
tion (1.1) with (1.3).

Definition 2.3. We say that the differential equation (1.1) has the Hyers-
Ulam-Rassias stability with initial conditions (1.2), if there exists φ ∈
C(I,R+) such that for every > 0, x ∈ Cn(I), if¯̄̄
x(n)(t) + an−1(t) x

(n−1)(t) + ...+ a2(t) x
00(t) + a1(t) x

0(t) + (a0(t)− p(t)) x(t)
¯̄̄
≤ φ(t),

with x(a) = x0(a) = x00(a) = ... = x(n−1)(t) = 0, then there exists some
y(t) ∈ Cn(I) satisfying the differentail equation

y(n)(t)+an−1(t) y
(n−1)(t)+...+a2(t) y

00(t)+a1(t) y
0(t)+(a0(t)− p(t)) y(t) = 0,

with y(a) = y0(a) = y00(a) = ... = y(n−1)(t) = 0, such that |x(t)− y(t)| ≤
φ(t) K( ).

We call such K as a Hyers-Ulam-Rassias stability constant for the differ-
ential equation (1.1) with (1.2).

Definition 2.4. We say that the differential equation (1.1) has the Hyers-
Ulam-Rassias stability with boundary conditions (1.3), if there exists θφ ∈
C(I,R+) such that for every > 0, x ∈ Cn(I), if¯̄̄
x(n)(t) + an−1(t) x

(n−1)(t) + ...+ a2(t) x
00(t) + a1(t) x

0(t) + (a0(t)− p(t)) x(t)
¯̄̄
≤ φ(t),

with x(a) = x(b) = 0, then there exists some y(t) ∈ Cn(I) satisfying the
differentail equation

y(n)(t)+an−1(t) y
(n−1)(t)+...+a2(t) y

00(t)+a1(t) y
0(t)+(a0(t)− p(t)) y(t) = 0,

with y(a) = y(b) = 0, such that |x(t)− y(t)| ≤ φ(t) K( ).

We call such K as a Hyers-Ulam-Rassias stability constant for the differ-
ential equation (1.1) with (1.3).
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Hyers-Ulam stability of nth order linear differential equation 561

3. Hyers-Ulam Stability

In this section, we investigate the Hyers-Ulam stability of the differ-
ential equation (1.1) with (1.2) and (1.3). Now, we prove the Hyers-Ulam
stability of the differential equation (1.1) with (1.2).

Theorem 3.1. If
n−1P
i=1

max |ai(t)| + max |(a0(t)− p(t))| < n!

(b− a)n
, then

the differential equation (1.1) has the Hyers-Ulam stability with initial con-
ditions (1.2).

Proof. For every > 0 and x ∈ Cn(I) satisfies
¯̄̄
x(n−1)(t)

¯̄̄
< ... <

|x00(t)| < |x0(t)| < |x(t)| if
¯̄̄
x(n)(t) + an−1(t) x(n−1)(t) + ...+ a2(t) x

00(t)

+a1(t) x
0(t) + (a0(t)− p(t)) x(t) ≤ ,

with x(a) = x0(a) = x00(a) = ... = x(n−1)(t) = 0. Then by Taylor’s formula,
we have

x(t) = x(a) + x
0
(a)(t− a) +

x
00
(a)

2!
(t− a)2 + ...+

x(n)(ξ)

n!
(t− a)n(3.1)

Since we have x(a) = x
0
(a) = x00(a) = ... = x(n−1)(t) = 0, then (4.1)

becomes

x(t) =
x(n)(ξ)

n!
(t− a)n.

So,

|x(t)| =
¯̄̄
x(n)(ξ)

n! (t− a)n
¯̄̄

max |x(t)| ≤ (b−a)n
n! max

¯̄̄
x(n)(t)

¯̄̄
max |x(t)| ≤ (b−a)n

n!

½
max

¯̄̄̄
x(n)(t) +

n−1P
i=1

ai(t)x
(i)(t) + (a0(t)− p(t)) x(t)

−
n−1P
i=1

ai(t)x
(i)(t)− (a0(t)− p(t)) x(t)

¯̄̄̄¾
max |x(t)| ≤ (b−a)n

n!

½
+

½
n−1P
i=1

max |ai(t)|+max |(a0(t)− p(t))|
¾
max |x(t)|

¾
max |x(t)| ≤ (b−a)n

n! + (b−a)n
n! λmax |x(t)|

where λ =
n−1P
i=1

max |ai(t)|+max |a0(t)− p(t)|. Now, let us choose
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562 R. Murali and A. Ponmana Selvan

δ =
(b− a)n

n!
λ. Hence we get,

max |x(t)| ≤ (b− a)n

n! (1− δ)
,

choose K as
(b− a)n

n! (1− δ)
, hence we have max |x(t)| ≤ K . Obviously, we

have y0(t) = 0 is a solution of

x(n)(t)+an−1(t) x
(n−1)(t)+...+a2(t) x

00(t)+a1(t) x
0(t)+(a0(t)− p(t)) x(t) = 0

with initial conditions x(a) = x0(a) = x00(a) = ... = x(n−1) = 0, such that
|x(t)− y0(t)| ≤ K .

Hence, by the virtue of Definition 2.1, the differential equation (1.1) has
the Hyers-Ulam stability with initial conditions (1.2). 2

Now, we investigate the Hyers-Ulam stability of the differential equation
(1.1) with boundary conditions (1.3).

Theorem 3.2. If
n−1P
i=1

max |ai(t)| + max |(a0(t)− p(t))| < n 2n n!

(b− a)n
, then

the differential equation (1.1) has the Hyers-Ulam stability with boundary
conditions (1.3).

Proof. For every > 0 and x ∈ Cn(I) satisfying¯̄̄
x(n)(t) + an−1(t) x

(n−1)(t) + ...+ a2(t) x
00(t) + a1(t) x

0(t) + (a0(t)− p(t)) x(t)
¯̄̄
≤ ,

with x(a) = x(b) = 0. LetM = max
n¯̄̄
x(i)(t)

¯̄̄
: t ∈ [a, b]

o
, i = 0, 1, 2, ..., n−

1. Since x(a) = x(b) = 0, there exists t0 ∈ (a, b) such that |x(t0)| = M .
Then by Taylor’s formula, we have

x(a) = x(t0) + x0(t0)(t0 − a) +
x00(t0)

2!
(t0 − a)2 + ...+

x(n)(ξ)

n!
(t0 − a)n(3.2)

x(b) = x(t0) + x
0
(t0)(b− t0) +

x00(t0)

2!
(b− t0)

2 + ...+
x(n)(ζ)

n!
(b− t0)

n(3.3)
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Hyers-Ulam stability of nth order linear differential equation 563

Since we have x(a) = 0, (4.2) becomes

x(n)(ξ)

n!
(t0 − a)n + ...+

x00(t0)

2!
(t0 − a)2 + x

0
(t0)(t0 − a) + x(t0) = 0,

thus
¯̄̄
x(n)(ξ)

¯̄̄
≥ n n! M

(t0 − a)n
. Now, let t0 ∈

µ
a,
a+ b

2

¸
, we have

n n! M

(t0 − a)n
≥ n n! M

(b− a)n

2n

=
n n! 2n M

(b− a)n
=

n n! 2n

(b− a)n
max |x(t)|.

Since we have x(b) = 0, (4.3) becomes

x(n)(ζ)

n!
(b− t0)

n + ...+
x00(t0)

2!
(b− t0)

2 + x
0
(t0)(b− t0) + x(t0) = 0.

Thus we have
¯̄̄
x(n)(ζ)

¯̄̄
≥ n n! M

(t0 − b)n
. Now, let t0 ∈

∙
a+ b

2
, b

¶
, we have

n n! M

(b− t0)n
≥ n n! M

(b− a)n

2n

=
n n! 2n M

(b− a)n
=

n n! 2n

(b− a)n
max |x(t)|

Hence, we obtain max |x(t)| ≤ (b− a)n

n n! 2n
max

¯̄̄
x(n)(t)

¯̄̄
. Thus we have

max |x(t)| ≤ (b−a)n
n n! 2n

½
max

¯̄̄̄
x(n)(t) +

n−1P
i=1

ai(t)x
(i)(t) + (a0(t)− p(t)) x(t)

−
n−1P
i=1

ai(t)x
(i)(t)− (a0(t)− p(t)) x(t)

¯̄̄̄¾
max |x(t)| ≤ (b−a)n

n n! 2n

½
+

½
n−1P
i=1

max |ai(t)|+max |(a0(t)− p(t))|
¾
max |x(t)|

¾
max |x(t)| ≤ (b−a)n

n n! 2n + (b−a)n
n n! 2nλmax |x(t)|

where λ =
n−1P
i=1

max |ai(t)| + max |(a0(t)− p(t))|. Now, let us choose δ =
(b− a)n

n n! 2n
λ. Hence we arrive that,

max |x(t)| ≤ (b− a)n

n n! 2n (1− δ)
.

Choose

K =
(b− a)n

n n! 2n (1− δ)
.
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564 R. Murali and A. Ponmana Selvan

Hence we have max |x(t)| ≤ K . Obviously, we have y0(t) = 0 is a solution
of

x(n)(t)+an−1(t) x
(n−1)(t)+...+a2(t) x

00(t)+a1(t) x
0(t)+(a0(t)− p(t)) x(t) = 0

with boundary conditions x(a) = x(b) = 0, such that

|x(t)− y0(t)| ≤ K .

Hence, by the virtue of Definition 2.2, the differential equation (1.1) has
the Hyers-Ulam stability with boundary conditions (1.3). 2

4. Hyers-Ulam-Rassias stability

The following Theorems are shows the Hyers-Ulam-Rassias stability of the
differential equation (1.1) with (1.2) and (1.3).

Theorem 4.1. If
n−1P
i=1

max |ai(t)| + max |(a0(t)− p(t))| < n!

(b− a)n
, then

the differential equation (1.1) has the Hyers-Ulam-Rassias stability with
the initial conditions (1.2).

Proof. For every > 0 and x ∈ Cn(I) satisfies¯̄̄
x(n−1)(t)

¯̄̄
< ... < |x00(t)| < |x0(t)| < |x(t)|, there exists a φ : I → [0,∞) if¯̄̄

x(n)(t) + an−1(t) x(n−1)(t) + ...+ a2(t) x
00(t) + a1(t) x

0(t) + (a0(t)− p(t)) x(t)
¯̄̄
≤

φ(t) ,
with x(a) = x0(a) = x00(a) = ... = x(n−1)(t) = 0. Then by Taylor’s formula,
we have

x(t) = x(a) + x
0
(a)(t− a) +

x
00
(a)

2!
(t− a)2 + ...+

x(n)(ξ)

n!
(t− a)n(4.1)

Since we have x(a) = x
0
(a) = x00(a) = ... = x(n−1)(t) = 0, then (4.1)

becomes

x(t) =
x(n)(ξ)

n!
(t− a)n.

So,
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Hyers-Ulam stability of nth order linear differential equation 565

|x(t)| =
¯̄̄
x(n)(ξ)

n! (t− a)n
¯̄̄

max |x(t)| ≤ (b−a)n
n! max

¯̄̄
x(n)(t)

¯̄̄
max |x(t)| ≤ (b−a)n

n!

½
max

¯̄̄̄
x(n)(t) +

n−1P
i=1

ai(t)x
(i)(t) + (a0(t)− p(t)) x(t)

−
n−1P
i=1

ai(t)x
(i)(t)− (a0(t)− p(t)) x(t)

¯̄̄̄¾
max |x(t)| ≤ (b−a)n

n!

½
φ(t) +

½
n−1P
i=1

max |ai(t)|+max |(a0(t)− p(t))|
¾
max |x(t)|

¾
max |x(t)| ≤ (b−a)n

n! φ(t) + (b−a)n
n! λmax |x(t)|

where λ =
n−1P
i=1

max |ai(t)| + max |a0(t)− p(t)|. Now, let us choose δ =

(b− a)n

n!
λ.Hence we get, max |x(t)| ≤ (b− a)n

n! (1− δ)
φ(t) , chooseK as

(b− a)n

n! (1− δ)
,

hence we have max |x(t)| ≤ K φ(t) . Obviously, we have y0(t) = 0 is a so-
lution of

x(n)(t)+an−1(t) x
(n−1)(t)+...+a2(t) x

00(t)+a1(t) x
0(t)+(a0(t)− p(t)) x(t) = 0

with initial conditions x(a) = x0(a) = x00(a) = ... = x(n−1) = 0, such that

|x(t)− y0(t)| ≤ Kφ(t) .

Hence, by the virtue of Definition 2.3, the differential equation (1.1) has
the Hyers-Ulam-Rassias stability with initial conditions (1.2). 2

Now, we prove the Hyers-Ulam-Rassias stability of the linear differential
equation (1.1) with boundary conditions (1.3).

Theorem 4.2. If
n−1P
i=1

max |ai(t)| + max |(a0(t)− p(t))| < n 2n n!

(b− a)n
, then

the differential equation (1.1) has the Hyers-Ulam-Rassias stability with
the boundary conditions (1.3).

Proof. For every > 0 and x ∈ Cn(I) if there exists φ : I → [0,∞)
satisfies the inequality¯̄̄
x(n)(t) + an−1(t) x

(n−1)(t) + ...+ a2(t) x
00(t) + a1(t) x

0(t) + (a0(t)− p(t)) x(t)
¯̄̄
≤ φ(t) ,

with x(a) = x(b) = 0. LetM = max
n¯̄̄
x(i)(t)

¯̄̄
: t ∈ [a, b]

o
, i = 0, 1, 2, ..., n−

1.
Since x(a) = x(b) = 0, there exists t0 ∈ (a, b) such that |x(t0)| = M .

Then by Taylor’s formula, we have
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566 R. Murali and A. Ponmana Selvan

x(a) = x(t0) + x0(t0)(t0 − a) +
x00(t0)

2!
(t0 − a)2 + ...+

x(n)(ξ)

n!
(t0 − a)n(4.2)

x(b) = x(t0) + x
0
(t0)(b− t0) +

x00(t0)

2!
(b− t0)

2 + ...+
x(n)(ζ)

n!
(b− t0)

n(4.3)

Since we have x(a) = 0, (4.2) becomes

x(n)(ξ)

n!
(t0 − a)n + ...+

x00(t0)

2!
(t0 − a)2 + x

0
(t0)(t0 − a) + x(t0) = 0,

thus
¯̄̄
x(n)(ξ)

¯̄̄
≥ n n! M

(t0 − a)n
. Now, let t0 ∈

µ
a,
a+ b

2

¸
, we have

n n! M

(t0 − a)n
≥ n n! M

(b− a)n

2n

=
n n! 2n M

(b− a)n
=

n n! 2n

(b− a)n
max |x(t)|.

Since we have x(b) = 0, (4.3) becomes

x(n)(ζ)

n!
(b− t0)

n + ...+
x00(t0)

2!
(b− t0)

2 + x
0
(t0)(b− t0) + x(t0) = 0.

Thus we have
¯̄̄
x(n)(ζ)

¯̄̄
≥ n n! M

(t0 − b)n
. Now, let t0 ∈

∙
a+ b

2
, b

¶
, we have

n n! M

(b− t0)n
≥ n n! M

(b− a)n

2n

=
n n! 2n M

(b− a)n
=

n n! 2n

(b− a)n
max |x(t)|

Hence, we obtain max |x(t)| ≤ (b− a)n

n n! 2n
max

¯̄̄
x(n)(t)

¯̄̄
. Thus we have

max |x(t)| ≤ (b−a)n
n n! 2n

½
max

¯̄̄̄
x(n)(t) +

n−1P
i=1

ai(t)x
(i)(t) + (a0(t)− p(t)) x(t)

−
n−1P
i=1

ai(t)x
(i)(t)− (a0(t)− p(t)) x(t)

¯̄̄̄¾
max |x(t)| ≤ (b−a)n

n n! 2n

½
φ(t) +

½
n−1P
i=1

max |ai(t)|+max |(a0(t)− p(t))|
¾
max |x(t)|

¾
max |x(t)| ≤ (b−a)n

n n! 2nφ(t) + (b−a)n
n n! 2nλmax |x(t)|
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Hyers-Ulam stability of nth order linear differential equation 567

where λ =
n−1P
i=1

max |ai(t)| + max |(a0(t)− p(t))|. Now, let us choose δ =
(b− a)n

n n! 2n
λ. Hence we arrive that,

max |x(t)| ≤ (b− a)n

n n! 2n (1− δ)
φ(t) ,

choose K as
(b− a)n

n n! 2n (1− δ)
. Hence we have max |x(t)| ≤ K φ(t) . Obvi-

ously, we have y0(t) = 0 is a solution of

x(n)(t)+an−1(t) x
(n−1)(t)+...+a2(t) x

00(t)+a1(t) x
0(t)+(a0(t)− p(t)) x(t) = 0

with boundary conditions x(a) = x(b) = 0, such that

|x(t)− y0(t)| ≤ K φ(t) .

Hence, by the virtue of Definition 2.4, the differential equation (1.1) has
the Hyers-Ulam-Rassias stability with boundary conditions (1.3). 2

5. Conclusion

The definition has studied in this work has applicable significance since it
means that if we studying the Hyers-Ulam stability of a system, then we
does not have to reach the exact solution (which usually is quite difficult
or time consuming), all what is required is to get a function, that is a close
exact solution. Therefore Hyers-Ulam stability guarantees that there is a
closed exact solution of the system under study. That is, we proved the
Hyers-Ulam stability and Hyers-Ulam-Rassias stability of the homogeneous
linear differential equation of nth order with initial and boundary condi-
tions by using Taylor’s Series formula. It is very useful to readers to get the
approximate solution of these kind of differential equations. Researchers are
still on going on the Hyers-Ulam stability of first, second order and higher
order homogeneous and non-homogeneous differential equations, in partial
differential equations and integral equations.
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