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1. Introduction

The subject matter of this article is to study controllability of affine control
systems on free nilpotent Lie groups using their Lie algebra properties via
their bilinear parts. Control systems are important from their application
point of views. In this work, we study controllability problem which is one
of the most important classical problem in the area. By controllability,
we mean to reach all points of the state space from an initial point by
using only positive time. In [1,2], authors study controllability of affine
control systems on Euclidean space of finite dimension and on Generalized
Heisenberg Lie groups, respectively, and they use bilinear parts of the affine
systems in order to verify controllability. In this work, we generalize this
approach to affine control systems on free nilpotent Lie groups which is the
larger case.

A control system Σ on a connected Lie group G is a couple together
with G and a dynamic D which consists of smooth vector fields defined on
G parametrized by the time t. If these vector fields are considered as a
sum of invariant vector fields and derivations from the derivation algebra
Der(L(G)), then we have affine control systems. In the next section, we
will explain affine control systems on Lie groups.

This work consists of three sections. In the second section, affine control
systems on Lie groups are given elaborately and in the third section, we
study free nilpotent Lie algebra and Lie groups with their relations and
construct an automorphism for free nilpotent Lie algebra which is necessary
for a relation between the affine control system and its bilinear part. We
present the automorphism orbit Aut(Gm,r)− orbit of the affine system on
the free nilpotent Lie group Gm,r and show that the automorphism orbit
Aut(Gm,r) − orbit is dense. By restricting the all system to Aut(Gm,r) −
orbit, we characterize controllability of the affine system on Gm,r.

2. Affine Control System on Lie Groups

First affine control systems on Euclidean spaces of finite dimension have
been introduced, [3], and affine control systems on Lie groups have followed
similarly. Let us consider a connected Lie groupG with its Lie algebra L(G)
and consider their derivation algebra Der(L(G)) which is defined by

Der(L(G)) = {D ∈ End(L(G))|D[X,Y ] = [D(X), Y ]+[X,D(Y )],∀X,Y ∈ L(G)}, [2].

Derivations are special endomorphisms for which they allow to construct
affine vector fields together with invariant vector fields of the Lie group G.
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Controllability of affine systems on free Nilpotent Lie groups Gm,r 503

A general affine control system Σ on a Lie group G is defined by the
following data

ġ = (D +X)g +
dX

j=1

uj(D
j + Y j)g

where X,Y 1, · · · , Y d ∈ L(G);D,D1, · · · ,Dd ∈ Der(L(G)), u is the con-
trol which is an element of U the class of piecewise constant real-valued
functions and g ∈ G, [2].

Affine Lie algebra af(G) as a vector space, consists of vector fields of
the form X +D and Lie group Af(G) of af(G) is a semi-direct product of
G and its set of automorphisms Aut(G). Aut(G) is a closed Lie subgroup
of G.

For affine Lie algebra af(G), Lie bracket operation is defined by

[(D1,X1), (D2,X2)] = ([D1,D2],D1X2 −D2X1 + [X1,X2]), [2].

In general affine control systems are richer class of systems than the
other control systems. If we consider control systems on Lie groups and if
G is an abelian Lie group, where each Lie brackets of Lie algebra is null,
then affine control system on G is transformed to linear control system.
Dynamic of linear control systems on Lie groups consist of vector fields
which has the form D + uX, where D is a derivation which are the inner
ones and X belongs to the Lie algebra L(G) of the Lie group G and u is a
piecewise constant real-valued function which is the control of the system.

If the vector fields X,Y 1, Y 2, · · · , Y d in the affine control systems on Lie
group are considered null, then the control systems can be viewed as bilinear
control system and if D,D1,D2, · · · ,Dd in the affine control systems on
Lie group are considered null, then the control systems can be viewed as
invariant control systems. Thus, affine control systems is more general than
linear, bilinear and invariant control systems.

3. Free Nilpotent Lie Algebras and Their Lie Groups

In this section, we consider free nilpotent Lie algebras and their Lie groups,
and this type of Lie groups are in the hearth of our systems as state spaces
of the systems in this work. Free nilpotent Lie algebra L(G)m,r are acquired
in the following way, [4]:
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504 Ayse Kara Hansen and Mahmut Kudeyt

Letm ≥ 2 and r ≥ 1 be integers and V1, V2, · · · , Vr be real vector spaces.
Let V1 := {X1,X2, · · · ,Xm} and

Vi := {[Xk,Xl]|Xk ∈ Va,Xl ∈ Vb, 1 ≤ k, l ≤ m,a+ b = i}, i = 2, ..., r.

We define L(G)m,r as

L(G)m,r = spanL.A.{X1,X2, ...,Xm}.

Then L(G)m,r can be written as a direct sum of Vi, i.e. ,

L(G)m,r = V1
M

· · ·
M

Vr.

Since L(G)m,r is a nilpotent Lie algebra; for X,Y ∈ L(G)m,r,

X¦Y :=
X
n≥1

(−1)n+1
n

X
pi+qi≥11≤i≤n

(adX)p1(adY )q1 · · · (adX)pn(adY )qn−1Y
(
Pn

j=1(pj + qj))p1!q1! · · · pn!qn!
.

= X + Y + 1
2 [X,Y ]

+ 1
12 [X, [X,Y ]]− 1

12 [Y, [X,Y ]]
− 1
48 [Y, [X, [X,Y ]]]− 1

48 [X, [Y, [X,Y ]]]
+{brackets of height ≤ 5}.

This operation is the well-known Campbell-Hausdorff formula and by
the nilpotency of L(G)m,r it follows that this operation is a binary operation
on L(G)m,r.

A connected and simply connected Lie group of L(G)m,r can be found
in the following way, [5].

Let r ≥ 1,m ≥ 2, and let d = dim(L(G)m,r). Then the vector fields
with polynomial coefficient on Rd, where d is the dimension of L(G)m,r, is
defined by :

E1 :=
∂
∂x1

,

E2 :=
∂
∂x2

+
P

jÂ2 P2,j
∂
∂xj

,
...

Em :=
∂

∂xm
+
P

jÂm Pm,j
∂
∂xj

We would like to explain this construction on an example.

Example 3.1. Let f3,3 be a free nilpotent Lie algebra with 3 generators
X1,X2,X3, where the rank of nilpotentcy is 3. We can generate other ele-
ments of the Lie algebra with the help of Hall basis, in the following way:
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Controllability of affine systems on free Nilpotent Lie groups Gm,r 505

X4 = [X2,X1], X5 = [X3,X1], X6 = [X3,X2], each of whose height is 2;
X7 = [[X2,X1],X1], X8 = [[X2,X1],X2], X9 = [[X2,X1],X3],
X10 = [[X3,X1],X1], X11 = [[X3,X1],X2], X12 = [[X3,X1],X3],
X13 = [[X3,X2],X2], X14 = [[X3,X2],X3], each of whose that is 3.

This example for free nilpotent Lie algebras provides different generators
for f3,3 which are isomorphic to X1,X2 and X3.

We set the new generators with some formulas:
E1 =

∂
∂x1

,

E2 =
∂
∂x2

+
14P
jÂ2

P2,j ,

E3 =
∂
∂x3

+
14P
jÂ4

P3,j ,

where Pi,j =
14P
j>i

(−1)(d(j)−d(i))
(I(j)−I(i))! x

(I(j)−I(i)) and Â is the operation of defining

order, i.e., given the element Xk = [[[[Xj ,Xi1 ], ...,Xin ], then k Â j. With
simple observation, 4 Â 2, 7 Â 2, 8 Â 2, 9 Â 2, 5 Â 3, 6 Â 3, 10 Â 3, 11 Â
3, 12 Â 3, 13 Â 3, 14 Â 3. In the formula, the function d(i) represents
the number of Lie brackets of the vector field Ei and I(i) represents in-
dex, which shows the number of generators except the first one, of that.
For instance, d(1) = d(2) = d(3) = 0, d(13) = 2 and the index of E13,
I(13) = (0, 2, 0).

With the above formulas, we give an illustration for Pi,j function. We
consider P3,14 and for the formula, the information what we need are
d(3) = 0, d(14) = 2 and I(3) = (0, 0, 0), I(14) = (0, 1, 1). Thus,

P3,14 = (
(−1)(2−0)x(1−0)2

1! )(
(−1)(2−0)x(1−0)3

1! ) = (x2)(x3).

After same calculations, we obtain
E1 =

∂
∂x1
,

E2 =
∂
∂x2

+ (−x1) ∂
∂x4

+ (
x21
2! )

∂
∂x7

+ (x1x2)
∂
∂x8

+ (x1x3)
∂
∂x9
,

E3 =
∂
∂x3

+ (−x1) ∂
∂x5

+ (−x2) ∂
∂x6

+ (
x21
2! )

∂
∂x10

+ (x1x2)
∂

∂x11
+ (x1x3)

∂
∂x12

+

(
x22
2! )

∂
∂x13

+ (x2x3)
∂

∂x14
.

In order to characterize controllability of affine control systems on free
nilpotent Lie groups, our approach is to find an automorphism in the alge-
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506 Ayse Kara Hansen and Mahmut Kudeyt

bra level between affine control system and its bilinear part. Then we have
the following Lemma.

Lemma 3.2. Consider the Lie algebra L(G)m,r of dimension d and the
mapping ϕλ : L(G)m,r → L(G)m,r such that

ϕλ

µ dX
i=1

xiEi

¶
=

dX
i=1

r
√
λaixiEi,

where {Ei}di=1 is a basis for L(G)m,r; λ ∈ (R+ ∪ {0}) and ai is the height
of Ei, i.e., if Ei ∈ Vk, then ai of Ei is k. Then, ϕλ : L(G)m,r → L(G)m,r is
an automorphism on L(G)m,r.

Proof. Let X,Y ∈ L(G)m,r.

ϕλ(X ¦ Y ) = ϕλ

µµ dX
i=1

xiEi

¶
¦
µ dX

i=1

yiEi

¶¶

= ϕλ

µ mX
i=1

(xi + yi)Ei +
1

2

mX
i=1,j=1j>i

(xjyi − xiyj)[Ei, Ej ] +
1

12

X
i=1,j=1,k=1

j > i ≤ km(xk − yk)(xjyi − xiyj)[Ek, [Ei, Ej ]] + · · ·
¶

=
r
√
λ

µ mX
i=1

(xi + yi)Ei +
r
√
λ2
1

2

mX
i=1,j=1j>i

(xjyi − xiyj)[Ei, Ej ]

+
r
√
λ3
1

12

mX
i=1,j=1,k=1j>i≤k

(xk − yk)(xjyi − xiyj)[Ek, [Ei, Ej ]] + · · ·
¶

=

µ mX
i=1

(xi + yi)
r
√
λEi +

1

2

mX
i=1,j=1j>i

(xjyi − xiyj)[
r
√
λEi,

r
√
λEj ]

+
1

12

mX
i=1,j=1,k=1j>i≤k

(xk − yk)(xjyi − xiyj)[
r
√
λEk, [

r
√
λEi,

r
√
λEj ]] + · · ·

¶
= ϕλ(X) ¦ ϕλ(Y ).

So, ϕλ is a homomorphism with the help of Campbell-Hausdorff for-
mula. For injection of ϕλ,

ϕλ(X) = ϕλ(Y )
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Controllability of affine systems on free Nilpotent Lie groups Gm,r 507

= ϕλ

µ dX
i=1

xiEi

¶
= ϕλ

µ dX
i=1

yiEi

¶
=

dX
i=1

r
√
λaixiEi =

dX
i=1

r
√
λaiyiEi

from equality of vector fields, each xi equals yi for all i = 1, · · · ,m. Then,
X = Y.

It is obvious that ϕλ is onto. This proves that ϕλ is an automorphism.
2

Lemma 3.3. Let Gm,r be a free nilpotent Lie group. Then there exists a
dense Aut(Gm,r)− orbit.

Proof. The set

O := exp(L(G)m,r − [...[L(G)m,r, L(G)m,r]...]| {z }
r−1

) = Gm,r − [...[Gm,r, Gm,r]...]| {z }
r−1

is an Aut(Gm,r) − orbit of Gm,r. In fact, the exponential map is a global
diffeomorphism for simply connected nilpotent Lie groups. If the binary
operation x ◦ y on Gm,r can be seen as left translation of y, then Jacobian
basis Z1, Z2, · · · , ZH of L(G)m,r can be obtained from Jacobian matrix of
left translation of y at origin, where H := dim(L(G)m,r). Since L(G)m,r is
nilpotent of step r,

L(G)m,r = V1
M

· · ·
M

Vr,

Lie brackets of each elements of Vr and the other elements of L(G)m,r which
has height ai ≤ r vanishes. Therefore, each Zi which belongs to Vr has

∂
∂xi

at origin. When we eliminate the elements of Vr from L(G)m,r , we delete
finitely many lines from Gm,r because of simply connectedness of Gm,r. So
this process does not change the dimension of the state space. Moreover,
Aut(Gm,r)− orbit of Gm,r is open.

For the density, any x ∈ [...[Gm,r, Gm,r]...]| {z }
r−1

, every ball B(x, δ)

B(x, δ) ∩Gm,r − [...[Gm,r,Gm,r]...]| {z }
r−1

6= ∅

2
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508 Ayse Kara Hansen and Mahmut Kudeyt

Theorem 3.4. An affine control system Σ = (Gm,r,D) on free nilpotent
Lie group Gm,r is controllable if Σ does not have any equilibrium point and
the associated bilinear control system Σb = (Gm,r,Db), where

Db = {D +
nX

j=1

ujD
j |D,Dj ∈ Der(L(G)m,r) and u ∈ Rn}

is controllable on the automorphism orbit Aut(Gm,r)− orbit of Gm,r.

Proof. Any equilibrium point in a control system is a problem for es-
tablishing controllability, because of their unreachability. Therefore, to not
have any equilibrium point is necessary for controllability. Define the auto-
morphism ξλ : Der(L(G)m,r) × L(G)m,r → Der(L(G)m,r) × L(G)m,r such
that ξ(D +X) = D + ϕλ(X), where Der(L(G)m,r) denotes the derivation
algebra of L(G)m,r, ϕλ is the automorphism given in Lemma 3.2.
ϕλ = (

r
√
λId, r

√
λId, · · · , r

√
λId, r−1√λId, · · · , r−1√λId, · · · , λId, · · · , λId) and,

for all X ∈ L(G)m,r, ϕλ → 0 as λ→ 0. Therefore, ξ(Σ)→ Σb as λ→ 0.

By the Lemma 3.3., we have the existence of a dense Aut(Gm,r) −
orbit for our control system. Via ϕλ, affine control system approaches
continuously to bilinear control system as λ→ 0. Hence, Σb is controllable
on every point.

For λ sufficiently small, ξλ(Σ) is controllable on
S(1, 1) − [...[L(G)m,r, L(G)m,r]...]| {z }

r−1

, where S(1, 1) is the unit sphere S(1, 1)

centered at 1 which is the boundary of the unit ball B(1, 1) centered at
1, because, complete controllability is preserved under small perturbations,
[6]. Then ξλ(Σ) is controllable on
B(1, 1)− [...[L(G)m,r, L(G)m,r]...]| {z }

r−1

. Indeed, finite systems normally control-

lable on S(1, 1) are open, [6]. Therefore, Σ is controllable on B(1ϕλ−1 , 1)−
[...[L(G)m,r, L(G)m,r]...]| {z }

r−1

, where

1ϕλ−1 = (1, (
e
r√
λ
, · · · , e

r√
λ
, e

r−1√
λ
), · · · , e

r−1√
λ
, · · · , eλ , · · · ,

e
λ). Then the positive

orbit of the affine system through the identity element is open and its in-
terior is non-empty and Σ is controllable. 2

Example 3.5. Let L(G)3,3 be a free nilpotent Lie algebra generated by
the vector fields {X1,X2,X3} with nilpotency degree 3. It is assumed that
the generator vector fields X1,X2,X3 can be arranged with respect to their
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Controllability of affine systems on free Nilpotent Lie groups Gm,r 509

heights, i.e., X1 < X2 < X3 to obtain elements of L(G)3,3 with the help of
Hall basis. The elements of L(G)3,3 can be shown in the following related
with their heights:

Height 1: X1,X2,X3,
Height 2: X4 = [X2,X1],X5 = [X3,X1],X6 = [X3,X2];
Height 3: X7 = [X4,X1] = [[X2,X1],X1],X8 = [X4,X2] = [[X2,X1],X2],
X9 = [X4,X3] = [[X2,X1],X3],X10 = [X5,X1] = [[X3,X1],X1],
X11 = [X5,X2] = [[X3,X1],X2],X12 = [X5,X3] = [[X3,X1],X3],
X13 = [X6,X2] = [[X3,X2],X2],X14 = [X6,X3] = [[X3,X2],X3].

It was mentioned that Grayson suggests a model for free nilpotent Lie
algebras, [5]. Thus, for the generators X1,X2,X3 of L(G)3,3, we found the
alternative basis {E1, E2, E3} for L(G)3,3 in Example (3.1). Therefore,
E1 =

∂
∂x1
,

E2 =
∂
∂x2

+ (−x1) ∂
∂x4

+ (
x21
2! )

∂
∂x7

+ (x1x2)
∂
∂x8

+ (x1x3)
∂
∂x9
,

E3 =
∂
∂x3

+ (−x1) ∂
∂x5

+ (−x2) ∂
∂x6

+ (
x21
2! )

∂
∂x10

+ (x1x2)
∂

∂x11
+ (x1x3)

∂
∂x12

+

(
x22
2! )

∂
∂x13

+ (x2x3)
∂

∂x14
.

From well-known Lie brackets of vector fields, it is obtain that X7 =
[[X2,X1],X1] = [[E2, E1], E1] =

∂
∂x7

. If the same calculations are proceeded,
then they can be viewed as
X8 =

∂
∂x8
, X9 =

∂
∂x9
, X10 =

∂
∂x10

, X11 =
∂

∂x11
,

X12 =
∂

∂x12
, X13 =

∂
∂x13

, X14 =
∂

∂x14
which are the elements of kernel of

L(G)3,3. Let (G3,3, ◦) be the simply connected and connected Lie group of
L(G)3,3. The product ”◦” on G3,3 is defined as
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x◦y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 + y1
x2 + y2
x3 + y3

x4 + y4 + 1/2(x2y1 − y2x1)
x5 + y5 + 1/2(x3y1 − y3x1)
x6 + y6 + 1/2(x3y2 − y3x2)

x7 + y7 + 1/2(x4y1 − y4x1) + 1/12(x2y1 − y2x1)(x1 − y1)
x8 + y8 + 1/2(x4y2 − y4x2) + 1/12(x2y1 − y2x1)(x2 − y2)
x9 + y9 + 1/2(x4y3 − y4x3) + 1/12(x2y1 − y2x1)(x3 − y3)
x10 + y10 + 1/2(x5y1 − y5x1) + 1/12(x3y1 − y3x1)(x1 − y1)
x11 + y11 + 1/2(x5y2 − y5x2) + 1/12(x3y1 − y3x1)(x2 − y2)
x12 + y12 + 1/2(x5y3 − y5x3) + 1/12(x3y1 − y3x1)(x3 − y3)
x13 + y13 + 1/2(x6y2 − y6x2) + 1/12(x3y2 − y3x2)(x2 − y2)
x14 + y14 + 1/2(x6y3 − y6x3) + 1/12(x3y2 − y3x2)(x3 − y3).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Let Σ(G3,3,D) be the affine control system on the free nilpotent Lie

group G3,3 where
D = {(D +X) +

Pd
i=1 ui(D

i +Xi)|D,Di ∈ DerL(G)3,3;X,Xi ∈ G3,3}
is the dynamic of the system. The automorphism orbit of G3,3 can be seen
as the following form:
Aut(G3,3) = exp(L(G)3,3 − Z(L(G)3,3)) = G3,3 − [[G3,3, G3,3], G3,3].
As it can be indicated above, each of the elements of kernel of the free
nilpotent Lie algebra Z(L(G)3,3 defines a line, then removing these ele-
ments from the Lie algebra and , of course, from the Lie group doesn’t
change the dimension of the automorphism orbit which is same as that of
G3,3. From Lemma 3.3, the automorphism orbit is dense. The Lie algebra
automorphism
ξ : af(L(G)3,3)→ af(L(G)3,3)
ξ(D +X) = D + ϕλ(X),

can be defined via the Lie algebra automorphism ϕλ defined in Lemma 3.2.
Since ϕλ approaches zero as λ approaches zero, the affine control system
consists of only vector fields from the derivation algebra of the Lie algebra.
Thus, the system can be converted the bilinear control system and we
can characterize the controllability of affine control system via that of its
bilinear control system.

Conclusion 3.6. In this work, we study the controllability of affine sys-
tems on free nilpotent Lie groups. Controllability problem is one of the
most important classical problem in Control Theory and its applications
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