doi:10.22199/issn.0717-6279-2019-03-0026 PROYECCIONES Journal of Mathematics

ISSN 0717-6279 (On line)

Upper triangular operator matrices and limit points of the essential spectrum

M. Karmouni*

A. Tajmouati** (iD orcid.org/0000-0003-1572-1241
A. El Bakkali***
*Cadi Ayyad University, Multidisciplinary Faculty, Safí, Morocco.

- mohammed.karmouni@uca.ma
**Sidi Mohamed Ben Abdellah Univerșity, Faculty of Sciences Dhar Al Mahraz, LAMA, Fez, Morocco. - ${ }^{\text {M }}$ abdelaziz.tajmouati@usmba.ac.ma
*"Chouaib Doukkali University, Faculty of Science, Dept. of Mathematics, Elijadida, Morocco.
- abdeslamelbakkalii@gmail.com

Received: November 2017 | Accepted: May 2019
Abstract:
In this paper, we investigate the limit points set of essential spectrum of upper triangular operator matrices

$$
M_{c}\left(\begin{array}{ll}
A & C \\
0 & B
\end{array}\right)
$$

We prove that $\operatorname{acc}_{e}\left(M_{c}\right) \cup W=\operatorname{acc}_{e}(A) \cup \operatorname{acco}_{e}(B)$ where W is the union of certain holes in accoe $\left(M_{C}\right)$, which happen to be subsets of acc $\sigma_{e}(B) \cap \operatorname{acc}_{e}(A)$. Also, several sufficient conditions for $\operatorname{acc} \sigma_{e}\left(M_{c}\right)=\operatorname{acc} \sigma_{e}(A) \cup \operatorname{acc}_{e}(B)$ holds are given.

Keywords: Fredholm operator; Essential spectra; Limit point; Operator matrices.
MSC (2000): 47A10, 47A11.

Cite this article as (IEEE citation style):

M. Karmouni, A. Tajmouati andA. El Bakkali, "Upper triangular operator matrices and limit points of the essential spectrum", Proyecciones (Antofagasta, On line), vol. 38, no. 3, pp. 401-409, Aug. 2019, doi: 10.22199/issn.0717-6279-2019-
 03-0026. [Accessed dd-mm-yyyy]

1. Introduction and Preliminaries

Let X, Y be infinite dimensional complex Banach spaces and $\mathcal{B}(X, Y)$ denote the complex algebra of all bounded linear operators from X to Y. For $Y=X$ we write $\mathcal{B}(X, X)=\mathcal{B}(X)$. If $T \in \mathcal{B}(X)$, we denote by $T^{*}, N(T)$, $R(T), \sigma_{a p}(T), \sigma_{s u}(T), \sigma(T)$, respectively the adjoint, the null space, the range, the approximate point spectrum, the surjectivity spectrum and the spectrum of T.

A bounded linear operator is called an upper semi-Fredholm (resp, lower semi-Fredholm) if $\alpha(T)=\operatorname{dim} N(T)<\infty$ and $R(T)$ is closed (resp, $\beta(T)=\operatorname{codim} R(T)<\infty) . T$ is semi-Fredholm if it is a lower or upper semiFredholm operator. The index of a semi Fredholm operator T is defined by $\operatorname{ind}(T)=\alpha(T)-\beta(T)$.
T is a Fredholm operator if is a lower and upper semi-Fredholm operator. The essential spectrum of T is the subset of \mathbf{C} defined by:

$$
\sigma_{e}(T)=\{\lambda \in \mathbf{C}: T-\lambda I \text { is not a Fredholm operator }\}
$$

Let $T \in \mathcal{B}(X, Y), T$ is said to be left Atkinson if T is upper semiFredholm and $R(T)$ is complemented in X, and it is said to be right Atkinson if T is lower semi-Fredholm and $N(T)$ is complemented in X (see [1]). The left and right Atkinson spectra are the subsets of \mathbf{C} defined respectively by:

$$
\begin{gathered}
\sigma_{l e}(T)=\{\lambda \in \mathbf{C}: T-\lambda I \text { is not a left Atkinson operator }\} \\
\sigma_{r e}(T)=\{\lambda \in \mathbf{C}: T-\lambda I \text { is not a right Atkinson operator }\} \\
\sigma_{e}(T), \sigma_{r e}(T) \text { and } \sigma_{l e}(T) \text { are compact subset and we have }
\end{gathered}
$$

$$
\sigma_{e}(T)=\sigma_{r e}(T) \cup \sigma_{l e}(T)
$$

For $A \in \mathcal{B}(X), B \in \mathcal{B}(Y)$, we denote by $M_{C} \in \mathcal{B}(X \oplus Y)$ the operator matrix acting on the product of Banach space $X \oplus Y[5]$:

$$
M_{C}=\left(\begin{array}{cc}
A & C \\
0 & B
\end{array}\right)
$$

It is well know that, in the case of infinite dimensional, the inclusion $\sigma\left(M_{C}\right) \subset \sigma(A) \cup \sigma(B)$, may be strict. This motivates serval authors to study the defect $\left(\sigma_{*}(A) \cup \sigma_{*}(B)\right) \backslash \sigma_{*}\left(M_{C}\right)$ where σ_{*} runs different type of spectra.

If H and K are Hilbert spaces, Du and Pan [5] have studied the description of $\bigcap_{C \in \mathcal{B}(K, H)} \sigma\left(M_{C}\right)$ by showing that

$$
\bigcap_{C \in \mathcal{B}(K, H)} \sigma\left(M_{C}\right)=\sigma_{a p}(A) \cup \sigma_{s u}(B) \cup\{\lambda \in \mathbf{C}: \alpha(B-\lambda) \neq \beta(A-\lambda)\}
$$

Han H.Y. Lee and W. Y. Lee [6] extended the result to the Banach spaces. In [3], D.S. Djordjevic give a description of $\bigcap_{C \in \mathcal{B}(K, H)} \sigma_{e}\left(M_{C}\right)$, he showed the following theorem.

Theorem 1.1 (3). . For given $(A, B) \in \mathcal{B}(X) \times \mathcal{B}(Y)$ the following holds:

$$
\bigcap_{C \in \mathcal{B}(Y, X)} \sigma_{e}\left(M_{C}\right)=\sigma_{l e}(A) \cup \sigma_{r e}(B) \cup W(A, B)
$$

Where $W(A, B)=\{\lambda \in \mathbf{C}, N(B-\lambda)$ and $X / \overline{R(A-\lambda)}$ are not isomorphic up to a finite dimensional subspace\}

In [9], the authors showed the following theorem.
Theorem 1.2 (9). . Let $(A, B) \in \mathcal{B}(X) \times \mathcal{B}(Y)$ and $C \in \mathcal{B}(Y, X)$. Then

$$
\sigma_{e}\left(M_{C}\right) \cup W_{e}=\sigma_{e}(A) \cup \sigma_{e}(B)
$$

where W_{e} is the union of certain holes in $\sigma_{e}\left(M_{C}\right)$, which happen to be subsets of $\sigma_{e}(A) \cap \sigma_{e}(B)$.

For a compact subset K of \mathbf{C}, let $a c c K$, int K, iso $K, \partial K$ and $\eta(K)$ be the set of all points of accumulation of K, the interior of K, the isolated points of K, the boundary of K and the polynomially convex hull of K respectively.

In this paper, we investigate the relationship between $\operatorname{acc} \sigma_{e}\left(M_{C}\right)$ and $\operatorname{acc} \sigma_{e}(A) \cup \operatorname{acc} \sigma_{e}(B)$. We show that the passage from $\operatorname{acc} \sigma_{e}\left(M_{0}\right)$ to $\operatorname{acc} \sigma_{e}\left(M_{C}\right)$ can be described as follows:

$$
\operatorname{acc} \sigma_{e}\left(M_{C}\right) \cup W=\operatorname{acc} \sigma_{e}\left(M_{0}\right)=\operatorname{acc} \sigma_{e}(A) \cup \operatorname{acc} \sigma_{e}(B)
$$

where W is the union of certain holes in $\operatorname{acc} \sigma_{e}\left(M_{C}\right)$, which happen to be subsets of $\operatorname{acc} \sigma_{e}(A) \cap a c c \sigma_{e}(B)$.

2. Main results

We start this section by proving that the limit point of essential spectrum set of a direct sum is the limit point of essential spectra of its summands.

Proposition 2.1. Let $(A, B) \in \mathcal{B}(X) \times \mathcal{B}(Y)$ and $C \in \mathcal{B}(Y, X)$. Then

$$
\operatorname{acc} \sigma_{e}\left(M_{0}\right)=\operatorname{acc} \sigma_{e}(A) \cup a c c \sigma_{e}(B)
$$

Proof. We have $\lambda \in \operatorname{acc} \sigma_{e}\left(M_{0}\right)$ if and only if $\lambda \in \operatorname{acc}\left(\sigma_{e}(A) \cup \sigma_{e}(B)\right)=$ $\operatorname{acc}\left(\sigma_{e}(A)\right) \cup \operatorname{acc}\left(\sigma_{e}(B)\right)$.

Lemma 2.1. Let $(A, B) \in \mathcal{B}(X) \times \mathcal{B}(Y)$ and $C \in \mathcal{B}(Y, X)$. Then

$$
\operatorname{acc} \sigma_{e}\left(M_{C}\right) \subseteq \operatorname{accc}_{e}\left(M_{0}\right)=\operatorname{acc} \sigma_{e}(A) \cup \operatorname{acc} \sigma_{e}(B)
$$

Proof. Without loss of generality, let $\lambda=0 \notin \operatorname{acco}_{e}(A) \cup \operatorname{acc} \sigma_{e}(B)$, then there exists $\varepsilon>0$ such that for any $\lambda, 0<|\lambda|<\varepsilon$, we have $A-\lambda I$ and $B-\lambda I$ are Fredholm. According to [4, Lemma 2.1], we have $M_{C}-\lambda I$ is Fredholm for any $\lambda, 0<|\lambda|<\varepsilon$, thus $0 \notin \operatorname{acc}\left(\sigma_{e}\left(M_{C}\right)\right)$. Therefore $\operatorname{acc} \sigma_{e}\left(M_{C}\right) \subseteq \operatorname{acc} \sigma_{e}(A) \cup \operatorname{acc} \sigma_{e}(B)$.

Definition 2.1. Let $T \in \mathcal{B}(X)$. We said that T has the property $a E$ at $\lambda \in \mathbf{C}$ if $\lambda \notin \operatorname{acc} \sigma_{e}(T)$.

The following lemma will be needed in the sequel.
Lemma 2.2. If two of M_{C}, A and B have the property $a E$ at 0 , then the third is also has the property $a E$.

Proof. $\quad i$ If A and B have the property $a E$, by lemma $2.1 M_{C}$ has the property $a E$.
ii) If M_{C} and A have the property $a E$, then $0 \notin \operatorname{acc}\left(\sigma_{e}\left(M_{C}\right)\right)$ and $0 \notin$ $\operatorname{acc}\left(\sigma_{e}(A)\right)$, thus there exists $\varepsilon>0$ such that $M_{C}-\lambda I$ and $A-\lambda I$ are Fredholm for every $\lambda, 0<|\lambda|<\varepsilon$. From [6, Corollary 5], $B-\lambda I$ is Fredholm for every $\lambda, 0<|\lambda|<\varepsilon$.
iii) If B and M_{C} have the property $a E$, the proof is similar to $i i$).

The first main result of this paper is the following theorem.

Theorem 2.1. Let $(A, B) \in \mathcal{B}(X) \times \mathcal{B}(Y)$ and $C \in \mathcal{B}(Y, X)$. Then

$$
\operatorname{acc} \sigma_{e}\left(M_{C}\right) \cup W=\operatorname{acc} \sigma_{e}(A) \cup \operatorname{acc} \sigma_{e}(B)
$$

where W is the union of certain holes in $\operatorname{acco}_{e}\left(M_{C}\right)$, which happen to be subsets of $\operatorname{acc} \sigma_{e}(B) \cap \operatorname{acc} \sigma_{e}(A)$.

Proof. We first claim that, for every $C \in \mathcal{B}(Y, X)$ we have

$$
\begin{equation*}
\left(a c c \sigma_{e}(A) \cup \operatorname{acc} \sigma_{e}(B)\right) \backslash \operatorname{acc} \sigma_{e}(A) \cap \operatorname{acc} \sigma_{e}(B) \subseteq \operatorname{acc} \sigma_{e}\left(M_{C}\right) \tag{1}
\end{equation*}
$$

Indeed, let $\lambda \in\left(\operatorname{acc} \sigma_{e}(A) \cup a c c \sigma_{e}(B)\right) \backslash \operatorname{acc} \sigma_{e}(A) \cap a c c \sigma_{e}(B)$, then $\lambda \in \operatorname{acc} \sigma_{e}(A) \backslash \operatorname{acc} \sigma_{e}(B)$ or $\lambda \in \operatorname{acc} \sigma_{e}(B) \backslash \operatorname{acc} \sigma_{e}(A)$.
i) If $\lambda \in \operatorname{acc} \sigma_{e}(A) \backslash a c c \sigma_{e}(B)$, then A has not the property $a E$ at λ and B has the property $a E$ at λ. Suppose that $\lambda \notin \operatorname{acc} \sigma_{e}\left(M_{C}\right)$, hence M_{C} has the property $a E$ at λ, by lemma $2.2 A$ has the property $a E$ at λ, contradiction. So $\lambda \in \operatorname{acc} \sigma_{e}\left(M_{C}\right)$.
ii) If $\lambda \in \operatorname{acc} \sigma_{e}(B) \backslash \operatorname{acc} \sigma_{e}(A)$, by the same argument of $\left.i\right)$ we have $\lambda \in \operatorname{acc} \sigma_{e}\left(M_{C}\right)$.

Next, we claim that for every $C \in \mathcal{B}(Y, X)$ we have

$$
\begin{equation*}
\eta\left(\operatorname{acc} \sigma_{e}\left(M_{C}\right)\right)=\eta\left(\operatorname{acc} \sigma_{e}(A) \cup \operatorname{acc} \sigma_{e}(B)\right) \tag{2}
\end{equation*}
$$

Since $\operatorname{acc} \sigma_{e}\left(M_{C}\right) \subseteq \operatorname{acc} \sigma_{e}(A) \cup a c c \sigma_{e}(B)$, we need to prove $\partial\left(a c c \sigma_{e}(A) \cup\right.$ $\left.\operatorname{acc} \sigma_{e}(B)\right) \subseteq \partial a c c \sigma_{e}\left(M_{C}\right)$. But since $\operatorname{int}\left(\operatorname{acc} \sigma_{e}\left(M_{C}\right)\right) \subseteq \operatorname{int}\left(\operatorname{acc} \sigma_{e}(A) \cup\right.$ $\left.\operatorname{acc} \sigma_{e}(B)\right)$, by the maximum modules theorem, it suffices to show that $\partial\left(\operatorname{acc} \sigma_{e}(A) \cup \operatorname{acc} \sigma_{e}(B)\right) \subseteq \operatorname{acc} \sigma_{e}\left(M_{C}\right)$. Without loss of generality, suppose $0 \in \partial\left(a c c \sigma_{e}(A) \cup a c c \sigma_{e}(B)\right)$. There are two cases to consider.

Case 1: If $0 \in \operatorname{acc}\left(\partial\left(\operatorname{acc} \sigma_{e}(A) \cup \operatorname{acc} \sigma_{e}(B)\right)\right)$, then there exists $\left(\lambda_{n}\right) \subseteq$ $\partial\left(a c c \sigma_{e}(A) \cup a c c \sigma_{e}(B)\right)$ such that $\lim _{n \rightarrow \infty} \lambda_{n}=0$, since

$$
\partial\left(a c c \sigma_{e}(A)\right) \subseteq \partial\left(\sigma_{e}(A)\right) \subseteq \sigma_{l e}(A) \subseteq \sigma_{e}\left(M_{C}\right)
$$

and

$$
\partial\left(a c c \sigma_{e}(B)\right) \subseteq \partial\left(\sigma_{e}(B)\right) \subseteq \sigma_{r e}(B) \subseteq \sigma_{e}\left(M_{C}\right)
$$

we have, $\lambda_{n} \in \sigma_{e}\left(M_{C}\right), n=1,2, \ldots$, hence $0 \in \operatorname{acc}\left(\sigma_{e}\left(M_{C}\right)\right)$.

Case 2: If $0 \in \operatorname{iso}\left(\partial\left(a c c \sigma_{e}(A) \cup a c c \sigma_{e}(B)\right)\right)$, since $\operatorname{acc} \sigma_{e}(A) \cup a c c \sigma_{e}(B)$ is closed, then $\operatorname{iso}\left(\partial\left(\operatorname{acc} \sigma_{e}(A) \cup \operatorname{acc} \sigma_{e}(B)\right)\right)=i s o\left(a c c \sigma_{e}(A) \cup a c c \sigma_{e}(B)\right)$.
$0 \in i \operatorname{so}\left(\operatorname{acc} \sigma_{e}(A) \cup a c c \sigma_{e}(B)\right)$, thus there exists $\varepsilon>0$ such that $\lambda \notin$ $\operatorname{acc}\left(a c c \sigma_{e}(A) \cup a c c \sigma_{e}(B)\right)$ for every $\lambda, 0<|\lambda|<\varepsilon$. Since $0 \in \operatorname{acc} \sigma_{e}(A) \cup$ $\operatorname{acc} \sigma_{e}(B)=\operatorname{acc}\left(\sigma_{e}(A) \cup \sigma_{e}(B)\right)$, there exists $\left(\mu_{n}\right) \subseteq \sigma_{e}(A) \cup \sigma_{e}(B)$ such that $\lim _{n \rightarrow \infty} \mu_{n}=0, \mu_{n} \neq 0$ for all n, thus there exists certain positive integer N such that $0<\left|\mu_{n}\right|<\varepsilon$ for any $n \geq N$. Let $\lambda_{n}=\mu_{N+1+n}$, then $\lambda_{n} \in \operatorname{iso}\left(\sigma_{e}(A) \cup \sigma_{e}(B)\right), n=1,2, .$. and $\lim _{n \rightarrow \infty} \lambda_{n}=0$. Since $\sigma_{e}(A)$ and $\sigma_{e}(B)$ are closed, then

$$
\begin{aligned}
i \operatorname{so}\left(\sigma_{e}(A) \cup \sigma_{e}(B)\right) & \subseteq i \operatorname{so}\left(\sigma_{e}(A)\right) \cup i s o\left(\sigma_{e}(B)\right) \\
& \subseteq \partial \sigma_{e}(A) \cup \partial \sigma_{e}(B) \\
& \subseteq \sigma_{l e}(A) \cup \sigma_{r e}(B) \subseteq \sigma_{e}\left(M_{C}\right)
\end{aligned}
$$

Then, $\lambda_{n} \in \operatorname{iso}\left(\sigma_{e}(A) \cup \sigma_{e}(B)\right) \subseteq \sigma_{e}\left(M_{C}\right), n=1,2, \ldots$ Since $\lim _{n \rightarrow \infty} \lambda_{n}=0$, so $0 \in \operatorname{acc} \sigma_{e}\left(M_{C}\right)$.

Therefore $\partial\left(\operatorname{acc} \sigma_{e}(A) \cup a c c \sigma_{e}(B)\right) \subseteq \operatorname{acc} \sigma_{e}\left(M_{C}\right)$. This proves (2).
$\operatorname{acc} \sigma_{e}\left(M_{C}\right) \subseteq \operatorname{acco}_{e}(A) \cup \operatorname{acc} \sigma_{e}(B)$ and (2) says that the passage from $\operatorname{acc} \sigma_{e}\left(M_{C}\right)$ to $\operatorname{acc} \sigma_{e}(A) \cup \operatorname{acc} \sigma_{e}(B)$ is the filling in certain of the holes in $\operatorname{acc} \sigma_{e}\left(M_{C}\right)$. But since $\left(\operatorname{acc} \sigma_{e}(A) \cup \operatorname{acc} \sigma_{e}(B)\right) \backslash \operatorname{acc} \sigma_{e}\left(M_{C}\right)$ is contained in $\operatorname{acc} \sigma_{e}(A) \cap \operatorname{acc} \sigma_{e}(B)$, it follows that the filling in certain of the holes in $\operatorname{acc} \sigma_{e}\left(M_{C}\right)$ should occur in $\operatorname{acc} \sigma_{e}(A) \cap \operatorname{acc} \sigma_{e}(B)$.
Corollary 2.1. Let $(A, B) \in \mathcal{B}(X) \times \mathcal{B}(Y)$. If acc $\sigma_{e}(A) \cap \operatorname{acc} \sigma_{e}(B)$ has no interior points, then for every $C \in \mathcal{B}(Y, X)$ we have

$$
\operatorname{acc} \sigma_{e}\left(M_{C}\right)=a c c \sigma_{e}(A) \cup a c c \sigma_{e}(B)
$$

Second main result is the following theorem.
Theorem 2.2. Let $(A, B) \in \mathcal{B}(X) \times \mathcal{B}(Y)$ and $C \in \mathcal{B}(Y, X)$. Then the following assertions are equivalent

1. $\sigma_{e}\left(M_{C}\right)=\sigma_{e}(A) \cup \sigma_{e}(B)$,
2. $\operatorname{acc} \sigma_{e}\left(M_{C}\right)=a c c \sigma_{e}(A) \cup a c c \sigma_{e}(B)$.

Proof. First we show that $W_{e} \subseteq W$.
Indeed, if $\lambda \in W_{e}$, from theorem 1.2, we have $\lambda \in\left(\sigma_{e}(A) \cup \sigma_{e}(B)\right) \backslash \sigma_{e}\left(M_{C}\right)$, then $\lambda \notin \sigma_{e}\left(M_{C}\right)$, hence $\lambda \notin \operatorname{acc} \sigma_{e}\left(M_{C}\right)$. It suffice to show that

$$
\lambda \in \operatorname{acc} \sigma_{e}(A) \cup \operatorname{acc} \sigma_{e}(B)=\operatorname{acc}\left(\sigma_{e}(A) \cup \sigma_{e}(B)\right)
$$

Suppose that $\lambda \notin \operatorname{acc}\left(\sigma_{e}(A) \cup \sigma_{e}(B)\right)$, since $\lambda \in \sigma_{e}(A) \cup \sigma_{e}(B)$, then

$$
\begin{aligned}
\lambda \in \operatorname{iso}\left(\sigma_{e}(A) \cup \sigma_{e}(B)\right) & \subseteq i s o\left(\sigma_{e}(A)\right) \cup i s o\left(\sigma_{e}(B)\right) \\
& \subseteq \partial \sigma_{e}(A) \cup \partial \sigma_{e}(B) \\
& \subseteq \sigma_{l e}(A) \cup \sigma_{r e}(B) \subseteq \sigma_{e}\left(M_{C}\right)
\end{aligned}
$$

Hence $\lambda \in \sigma_{e}\left(M_{C}\right)$, contradiction. Therefore

$$
\lambda \in\left(a c c \sigma_{e}(A) \cup a c c \sigma_{e}(B)\right) \backslash a c c \sigma_{e}\left(M_{C}\right)
$$

By theorem 2.1, we have $\lambda \in W$. So $W_{e} \subseteq W$.
Furthermore, $W_{e} \subseteq W$ implies that

$$
\operatorname{acc} \sigma_{e}\left(M_{C}\right)=\operatorname{acc}_{e}(A) \cup \operatorname{acc} \sigma_{e}(B) \Longrightarrow \sigma_{e}\left(M_{C}\right)=\sigma_{e}(A) \cup \sigma_{e}(B)
$$

Conversely, if $\sigma_{e}\left(M_{C}\right)=\sigma_{e}(A) \cup \sigma_{e}(B)$ let $\lambda \notin \operatorname{acc} \sigma_{e}\left(M_{C}\right)$, without loss of generality, we assume that $0 \notin \operatorname{acc} \sigma_{e}\left(M_{C}\right)$, then there exists $\varepsilon>0$ such that $M_{C}-\lambda$ is Fredholm for all $\lambda, 0<|\lambda|<\varepsilon$, hence $\lambda \notin \sigma_{e}\left(M_{C}\right)=$ $\sigma_{e}(A) \cup \sigma_{e}(B)$. Thus both $A-\lambda$ and $B-\lambda$ are Fredholm for every λ, $0<|\lambda|<\varepsilon$. Therefore $0 \notin \operatorname{acc}\left(\sigma_{e}(A)\right) \cup \operatorname{acc}\left(\sigma_{e}(B)\right)$. Since $\operatorname{acc} \sigma_{e}\left(M_{C}\right) \subseteq$ $\operatorname{acc} \sigma_{e}(A) \cup a c c \sigma_{e}(B)$ always holds, then $\operatorname{acc} \sigma_{e}\left(M_{C}\right)=\operatorname{acc}_{e}(A) \cup a c c \sigma_{e}(B)$.

It is immediate to check the following result.
Corollary 2.2. Let $(A, B) \in \mathcal{B}(X) \times \mathcal{B}(Y)$. If acco $\sigma_{e}(A) \cap \operatorname{acc} \sigma_{e}(B)$ has no interior points, then for every $C \in \mathcal{B}(Y, X)$, we have we have

$$
\sigma_{e}\left(M_{C}\right)=\sigma_{e}(A) \cup \sigma_{e}(B) \quad(* *)
$$

In particular, if either $A \in \mathcal{B}(X)$ or $B \in \mathcal{B}(Y)$ is a Riesz, then ($* *$) holds.
Now, For $(A, B) \in \mathcal{B}(X) \times \mathcal{B}(Y)$, let $L_{A}\left(\operatorname{resp} R_{B}\right)$ be the left (resp. right) multiplication operator given by $L_{A}(X)=A X ;\left(\right.$ resp. $R_{B}(X)=$ $X B)$, and let $\delta_{A, B}(X)=A X-X B=L_{A}(X)-R_{B}(X)$ be the usual generalized derivation associated with A and B. We denote by $N^{\infty}(A)=$ $\bigcup_{n \geq 1} N\left(A^{n}\right)$ the generalized kernel of $A[1]$.

Corollary 2.3. Let $A \in \mathcal{B}(X)$ and $B \in \mathcal{B}(Y)$. If C is in the closure of the set

$$
R\left(\delta_{A, B}\right)+N\left(\delta_{A, B}\right)+\bigcup_{\lambda \in \mathbf{C}} N^{\infty}\left(L_{A-\lambda}\right)+\bigcup_{\lambda \in \mathbf{C}} N^{\infty}\left(R_{B-\lambda}\right)
$$

then :

$$
\operatorname{acc} \sigma_{e}\left(M_{C}\right)=\operatorname{acc} \sigma_{e}(A) \cup \operatorname{acc} \sigma_{e}(B)
$$

Proof. If C is in the closure of the set

$$
R\left(\delta_{A, B}\right)+N\left(\delta_{A, B}\right)+\bigcup_{\lambda \in \mathbf{C}} N^{\infty}\left(L_{A-\lambda}\right)+\bigcup_{\lambda \in \mathbf{C}} N^{\infty}\left(R_{B-\lambda}\right)
$$

then $\sigma_{e}\left(M_{C}\right)=\sigma_{e}(A) \cup \sigma_{e}(B)$, by [2]. From theorem 2.2, we obtain the result.
Acknowledgement: The authors thank the referces for his suggestions and comments thorough reading of the manuscript.

References

[1]P. Aiena, Semi-Fredholm operators, Perturbation theory and localized SVEP. Caracas: Ediciones IVIC, 2007.
[2]C. Benhida, E. Zerouali and H. Zguitti, "Spectra of upper triangular operator matrices", Proceedings of the American Mathematical Society, vol. 133, no. 10, pp. 3013-3021, 2005, doi: 10.1090/s0002-9939-05-07812-3.
[3]D. Djordjevic, "Perturbations of spectra of operator matrices", Journal of Operator Theory, vol. 48, no. 3, pp. 467-486, 2002. [On line]. Available: http://bit.ly/20M2xQS
[4]S. Djordević and Y. Han, "A note on Weyl's theorem for operator matrices", Proceedings of the American Mathematical Society, vol. 131, no. 8, pp. 25432548, doi: 10.1090/s0002-9939-02-06808-9.
[5]H. Du and P. Jin, "Perturbation of spectrum of 2×2 operator matrices", Proceedings of the American Mathematical Society, vol. 121, no. 3, pp.761-766, doi: 10.1090/S0002-9939-1994-1185266-2.
[6] J. Han, H. Lee and W. Lee, "Invertible completions of 2×2 upper triangular operator matrices", Proceedings of the American Mathematical Society, vol. 128, no. 01, pp. 119-124, 2000, doi: 10.1090/s0002-9939-99-04965-5.
[7] K. Laursen and M. Neumann, An introduction to local spectral theory. (London Mathematical Society Monograph, New series, vol. 20). Oxford: Clarendon Press, 2000.
[8] E. Zerouali and H. Zguitti, "Perturbation of spectra of operator matrices and local spectral theory", Journal of Mathematical Analysis and Applications, vol. 324, no. 2, pp. 992-1005, 2006, doi: 10.1016/j.jmaa.2005. 12.065.
[9] Y. Zhang, H. Zhong, and L. Lin, "Browder spectra and essential spectra of operator matrices", Acta Mathematica Sinica, English Series, vol. 24, no. 6, pp. 947-954, 2008, doi: 10.1007/s10114-007-6339-x.

