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138 Prasanta Kumar Ray

1. Introduction

Balancing numbers were originally introduced by Behera and Panda [1] in
connection with the Diophantine equation 1+2+ · · ·+(n− 1) = (n+1)+
(n + 2) + · · · + (n + r), where, they call ‘n’ a balancing number and ‘r’
a balancer corresponds to ‘n’. The sequence of balancing numbers {Bn}
satisfies the recurrence relation

Bn+1 = 6Bn −Bn−1, n ≥ 1,(1.1)

with B0 = 0, B1 = 1. A closely associate sequence {Cn} of {Bn} called as
sequence of Lucas-balancing numbers satisfies the same recurrence relation
as that of balancing numbers but with different initials, that is

Cn+1 = 6Cn − Cn−1, n ≥ 1,(1.2)

with C0 = 1, C1 = 3. Both of the sequences {Bn} and {Cn} are obtained
from the Pell equation C2n − 8B2n = 1 [8, 10]. For details about these num-
ber sequences, one can go through [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

In [18], Stakhov and Rozin presented the results of some new research
on hyperbolic functions that unite the characteristics of the classical hy-
perbolic functions and the recurring Fibonacci and Lucas series. The sim-
plicity and beauty of Fibonacci numbers have motivated to develop matrix
cryptosystems, which are useful in digital communications, i.e., digital TV,
digital telephony, digital measurement, etc. One of such cryptosystems,
called as “golden cryptography” based on the golden matrices, a general-
ization of Fibonacci Q-matrices for continuous domain, was introduced by
Stakhov [20]. Later, he improved the golden cryptography by using the
golden Gk-matrices based on the k-Fibonacci hyperbolic functions [19].

In the present article, we introduce a new class of hyperbolic functions
known as hyperbolic balancing and hyperbolic Lucas-balancing functions
that also unite the characteristics of the classical hyperbolic functions and
the recurring balancing and Lucas-balancing numbers. Several identities
involving hyperbolic balancing and Lucas-balancing functions are also es-
tablished. Further, a new class of square matrices, a generalization of
balancing QB-matrices for continuous domain, is considered. This class of
matrices enable us to develop a cryptography method for security purpose.
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A cryptography method based on hyperbolic balancing and Lucas ... 139

2. Hyperbolic balancing and hyperbolic Lucas-balancing func-
tions

Behera and Panda [1] and later Panda and Ray [6] have connected balancing
and Lucas-balancing numbers with balancing constants λ = 3+

√
8, λ−1 =

3−
√
8 that are the roots of (1.1) and obtained the Binet formulas for both

these numbers as

Bn =
λn − λ−n

2
√
8

and Cn =
λn + λ−n

2
.(2.1)

Also it is observed that, both balancing and Lucas-balancing numbers
may be extended backward. For instance, the sequences Bn and B−n are
of opposite sign, that is Bn = −B−n for all integers n. On the other hand,
the sequences Cn and C−n coincide for every integer n, that is Cn = C−n.

Replacing the discrete variable n by the continuous variable x (x is any
real number) in (3) and based on an analogy between (3) and the classical
hyperbolic functions

sh(x) =
ex − e−x

2
, ch(x) =

ex + e−x

2
,

we now define the hyperbolic balancing and hyperbolic Lucas-balancing
functions as follows:

Definition 2.1. Sine hyperbolic balancing and cosine hyperbolic balanc-
ing functions are respectively defined by

shB(x) =
λx − λ−x

2
√
8

and chB(x) =
λx + λ−x

2
√
8

,(2.2)

where λ = 3 +
√
8 and λ−1 = 3−

√
8.

Definition 2.2. Sine hyperbolic Lucas-balancing and cosine hyperbolic
Lucas-balancing are defined by

shC(x) =
λx − λ−x

2
and chC(x) =

λx + λ−x

2
.(2.3)

Balancing numbers and Lucas-balancing numbers are related with sine
hyperbolic balancing and cosine hyperbolic Lucas-balancing functions given
by (2.1) and (2.2) in the following way.
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140 Prasanta Kumar Ray

shB(n) = Bn, chC(n) = Cn,(2.4)

where n ∈ Z. It can also be observed that the hyperbolic balancing and
Lucas-balancing functions are connected with classical hyperbolic functions
by

shB(x) =
1√
8
sh(lnλ · x); chB(x) = 1√

8
ch(lnλ · x),

shC(x) = sh(lnλ · x); chC(x) = ch(lnλ · x).(2.5)

Further, the hyperbolic balancing and Lucas-balancing functions are
connected among themselves by the relation:

shB(x) =
1√
8
shC(x), chB(x) =

1√
8
chC(x).(2.6)

The graphs of hyperbolic balancing and Lucas-balancing functions are
shown in Fig. 1 and Fig. 2. Their graphs have a symmetrical form and are
similar to the graphs of the classical hyperbolic functions. Noting that, for
the point x = 0, the hyperbolic balancing cosine chB(x) takes the value
chB(0) = 1√

8
whereas the hyperbolic Lucas-balancing cosine chC(x) has

the value chC(0) = 1.

3. Identities involving hyperbolic balancing and hyperbolic
Lucas-balancing functions

In this section, we find some mathematical properties of the hyperbolic
balancing and Lucas-balancing functions resemble with that of balancing
and Lucas-balancing numbers.

Marisol Martínez
fig1-2
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A cryptography method based on hyperbolic balancing and Lucas ... 141

Theorem 3.1. The following identities that are analogous to the recur-
rence relation for balancing numbers are valid for hyperbolic balancing
functions too. That is,

shB(x+2) = 6shB(x+1)−shB(x) and chB(x+2) = 6chB(x+1)−chB(x).

Proof. By virtue of Definition 2.1 and the recurrence relation (1.1), we
have

6shB(x+ 1)− shB(x) = 6λ
x+1−λ−x−1

2
√
8

− λx−λ−x
2
√
8

= λx(6λ−1)−λ−x(6λ−1−1)
2
√
8

= λxλ2−λ−xλ−2
2
√
8

= λx+2−λ−x−2
2
√
8

= shB(x+ 2).

The other identity can be shown similarly. 2

Theorem 3.2. The following identities that are analogous to the recur-
rence relation for Lucas-balancing numbers is also valid for hyperbolic
Lucas-balancing functions:

shC(x+2) = 6shC(x+1)−shC(x) and chC(x+2) = 6chC(x+1)−chC(x).

Proof. The proof is analogous to Theorem 3.1. 2

Theorem 3.3. The identities that are similar to the Cassini identity B2n−
Bn+1Bn−1 = 1 [3] is valid for hyperbolic balancing functions too. That is

shB(x)2−shB(x+1)shB(x−1) = 1 and chB(x)2−chB(x+1)chB(x−1) = −1.

Proof. Using Definition 2.1 and as λ− λ−1 = 2
√
8, we obtain

shB(x)2 − shB(x+ 1)shB(x− 1) =
³
λx−λ−x
2
√
8

´2
− λx+1−λ−x−1

2
√
8

λx−1−λ−x+1
2
√
8

= λ2+λ−2−2
(2
√
8)2

=
(λ−λ−1)2

(2
√
8)2

= 1.

The second identity can be proved similarly. 2

Theorem 3.4. The following identity that is similar to the identity 2C2n−
C2n = 1 is valid for the hyperbolic Lucas-balancing functions.

2[shC(x)]2 − shC(2x) = −1 and 2[chC(x)]2 − chC(2x) = 1.
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142 Prasanta Kumar Ray

Proof. The proof is similar to Theorem 3.3. 2

Theorem 3.5. The following result that is similar to the identity Bn+1 −
Bn−1 = 2Cn is valid for the hyperbolic balancing and Lucas-balancing
functions.

shB(x+1)−shB(x−1) = 2chC(x) and chB(x+1)−chB(x−1) = 2shC(x).

Proof. Using Binet’s formula and as λx−λ−x = 2
√
8, we get the desired

result. 2

Theorem 3.6. The following identity that is similar to the identity 3Bn+
Cn = Bn+1 is valid for the hyperbolic balancing and Lucas-balancing func-
tions.

3shB(x) + chC(x) = shB(x+ 1) and 3chB(x) + shC(x) = chB(x+ 1).

Proof. The proof is analogous to Theorem 3.5. 2

In Table 1 and Table 2, we indicate some known properties of balanc-
ing and Lucas-balancing numbers and the appropriate properties of the
hyperbolic balancing and Lucas-balancing functions for comparison.

Table 3.1:
Identities for balancing and Lucas-balancing numbers Identities for hyperbolic balancing
Bn+2 = 6Bn+1 − Bn sB(x + 2) = 6sB(x + 1) − sB(x)
Bn = −B−n sB(x) = −sB(−x)
Bn+3 + 6Bn = 35Bn+1 shB(x + 3) + 6shB(x) = 35shB(x + 1)

B2n − Bn+1Bn−1 = 1 [shB(x)]2 − shB(x + 1)shB(x− 1) = 1

B2n+1 = B2n+1 − B2n chB(2x + 1) = [chB(x + 1)]2 − [chB(x)]2

6B3n = B3n+1 − 6B3n +B3n−1 6shB(3x) = [chB(x+ 1)]3 − 6[shB(x)]3 + [chB(x− 1)]3

Cn+2 = 6Cn+1 − Cn shC(x + 2) = 6shC(x+ 1)− shC(x)
Cn = C−n shC(x) = −shC(−x)
2C2n − 1 = C2n 2[shC(x)]2 + 1 = shC(2x)

Cn+1Cn−1 − C2n = 8 shC(x + 1)shC(x− 1)− [chC(x)]2 = −8
Cn+1 − Cn−1 = 16Bn shC(x + 1) − shC(x− 1) = 16chB(x)
3Cn + 8Bn = Cn+1 3shC(x) + 8shB(x) = shC(x+ 1)

C2n+1 − C2n = 8B2n+1 [shC(x + 1)]2 − [shC(x)]2 = 8shB(2x+ 1)
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A cryptography method based on hyperbolic balancing and Lucas ... 143

Table 3.2:
Identities for balancing and Lucas-balancing numbers Identities for Lucas-balancing functions
Bn+2 = 6Bn+1 − Bn cB(x+ 2) = 6cB(x + 1) − cB(x)

Bn = −B−n cB(x) = −cB(−x)
Bn+3 + 6Bn = 35Bn+1 chB(x + 3) + 6chB(x) = 35chB(x + 1)

B2n − Bn+1Bn−1 = 1 [chB(x)]2 − chB(x + 1)chB(x− 1) = −1
B2n+1 = B2n+1 − B2n chB(2x + 1) = [shB(x + 1)]2 − [shB(x)]2

6B3n = B3n+1 − 6B3n +B3n−1 6chB(3x) = [shB(x+ 1)]3 − 6[chB(x)]3 + [shB(x− 1)]3

Cn+2 = 6Cn+1 − Cn chC(x + 2) = 6chC(x+ 1)− chC(x)
Cn = C−n chC(x) = chC(−x)
2C2n − 1 = C2n 2[chC(x)]2 − 1 = chC(2x)

Cn+1Cn−1 − C2n = 8 chC(x + 1)chC(x− 1)− [shC(x)]2 = 8
Cn+1 − Cn−1 = 16Bn chC(x + 1)− chC(x− 1) = 16shB(x)
3Cn + 8Bn = Cn+1 3chC(x) + 8chB(x) = chC(x + 1)

C2n+1 − C2n = 8B2n+1 [chC(x + 1)]2 − [chC(x)]2 = 8shB(2x+ 1)

4. Some hyperbolic properties of the hyperbolic balancing
and Lucas-balancing functions

The hyperbolic balancing and Lucas-balancing functions have properties
that are similar to the classical hyperbolic functions.

Theorem 4.1. The following result that is similar to the identity [ch(x)]2−
[sh(x)]2 = 1 is valid for the hyperbolic balancing and Lucas-balancing func-
tions.

[chC(x)]2 − 8[shB(x)]2 = 1 and [shC(x)]2 − 8[chB(x)]2 = −1.

Proof. Since λxλ−x = 1, we have

[chC(x)]2 − 8[shB(x)]2 =
³
λx+λ−x

2

´2
− 8

³
λx−λ−x
2
√
8

´2
= (λx+λ−x)2−(λx−λ−x)2

4 = λxλ−x = 1.
Other identity can be shown similarly. 2

Theorem 4.2. The following identity that is similar to the result ch(x+
y) = ch(x)ch(y) + sh(x)sh(y) is valid for the hyperbolic balancing and
Lucas-balancing functions.

chC(x+ y) = chC(x)chC(y) + 8shB(x)shB(y).

Proof. By (2.1) and (2.2), we obtain

chC(x)chC(y) + 8shB(x)shB(y) = λx+λ−x

2
λy+λ−y

2 + 8λ
x+λ−x

2
√
8

λy+λ−y

2
√
8

= λx+y+λx−y+λ−x+y+λ−(x+y)+λx+y−λx−y−λ−x+y+λ−(x+y)
4

= λx+y+λ−(x+y)

2 = chC(x+ y).
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144 Prasanta Kumar Ray

This completes the proof. 2

Theorem 4.3. The following result that is similar to the identity ch(x−
y) = ch(x)ch(y) − sh(x)sh(y) is valid for the hyperbolic balancing and
Lucas-balancing functions.

chC(x+ y) = chC(x)cC(y)− 8shB(x)shB(y).

Proof. The proof is analogous to Theorem 4.2. 2

Theorem 4.4. The following correlations that are similar to the derivative
classical hyperbolic functions

[sh(x)]n =

(
ch(x), for n=2k+1;
sh(x), for n=2k.

, [ch(x)]n =

(
sh(x), for n=2k+1;
ch(x), for n=2k.

are valid for the derivative hyperbolic balancing and Lucas-balancing func-

tions. [shB(x)]n =

(
1√
8
(lnλ)nchC(x), for n=2k+1;

(lnλ)nshB(x), for n=2k.
, [chC(x)]n =( √

8(lnλ)nshB(x), for n=2k+1;
(lnλ)nchC(x), for n=2k.

Proof. Based on the Definitions 2.1 and 2.2, we obtain

[shB(x)]0 =
³
λx−λ−x
2
√
8

´0
= λx lnλ+λ−x lnλ

2
√
8

= lnλ√
8
chC(x)

[chC(x)]0 =
³
λx+λ−x

2

´0
= λx lnλ−λ−x lnλ

2 = lnλ
√
8 shB(x)

[shB(x)]00 =
³
lnλ√
8
chC(x)

´0
= (lnλ)2shB(x)

[chC(x)]00 =
³
lnλ
√
8 shB(x)

´0
= (lnλ)2chC(x)

. . . . . . . . .

[shB(x)]n =

(
1√
8
(lnλ)nchC(x), for n=2k+1;

(lnλ)nshB(x), for n=2k.

[chC(x)]n =

( √
8(lnλ)nshB(x), for n=2k+1;

(lnλ)nchC(x), for n=2k.

This ends the proof. 2
In Table 3 and Table 4, we indicate some known properties of classi-

cal hyperbolic functions and the appropriate properties of the hyperbolic
balancing and Lucas-balancing functions for comparison.
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A cryptography method based on hyperbolic balancing and Lucas ... 145

Table 4.1:
Identities for classical hyperbolic functions Identities for hyperbolic balancing

[coshx]2 − [sinh x]2 = 1 [chC(x)]2 − 8[shB(x)]2 = 1

ch(x± y) = ch(x)ch(y)± sh(x)sh(y) 1√
8
chB(x± y) = chB(x)chB(y)± shB(x)shB(y)

sh(x± y) = sh(x)ch(y) ± ch(x)sh(y) 1√
8
shB(x± y) = shB(x)chB(y)± chB(x)shB(y)

ch(2x) = [ch(x)]2 + [sh(x)]2 1√
8
chB(2x) = [chB(x)]2 + [shB(x)]2

sh(2x) = 2sh(x)ch(x) 1√
8
shB(2x) = 2shB(x)chB(x)

[ch(x)](n) =

n
sh(x), for n=2k+1;
ch(x), for n=2k.

[chB(x)](n) =

n
(lnλ)nshB(x), for n=2k+1;
(lnλ)nchB(x), for n=2k.

[sh(x)](n) =

n
ch(x), for n=2k+1;
sh(x), for n=2k.

[shB(x)](n) =

n
(lnλ)nchB(x), for n=2k+1;
(lnλ)nshB(x), for n=2k.R R R

n
ch(x)dx =

n
sh(x), for n=2k+1;
ch(x), for n=2k.

R R R
n
chB(x)dx =

n
(lnλ)−nshB(x), for n=2k+1;

(lnλ)−nchB(x), for n=2k.R R R
n
sh(x)dx =

n
ch(x), for n=2k+1;
sh(x), for n=2k.

R R R
n
shB(x)dx =

n
(lnλ)−nchB(x), for n=2k+1;

(lnλ)−nshB(x), for n=2k.

Table 4.2:
Identities for classical hyperbolic functions Identities for Lucas-balancing functions

[coshx]2 − [sinh x]2 = 1 [shC(x)]2 − 8[chB(x)]2 = −1
ch(x± y) = ch(x)ch(y)± sh(x)sh(y) chC(x± y) = chC(x)cC(y)± shC(x)shC(y)
sh(x± y) = sh(x)ch(y) ± ch(x)sh(y) sC(x± y) = shC(x)chC(y)± chC(x)shC(y)

ch(2x) = [ch(x)]2 + [sh(x)]2 chC(2x) = [chC(x)]2 + [shC(x)]2

sh(2x) = 2sh(x)ch(x) shC(2x) = 2shC(x)chC(x)

[ch(x)](n) =

n
sh(x), for n=2k+1;
ch(x), for n=2k.

[chC(x)](n) =

n
(lnλ)nshC(x), for n=2k+1;
(lnλ)nchC(x), for n=2k.

[sh(x)](n) =

n
ch(x), for n=2k+1;
sh(x), for n=2k.

[shC(x)](n) =

n
(lnλ)nchC(x), for n=2k+1;
(lnλ)nshC(x), for n=2k.R R R

n
ch(x)dx =

n
sh(x), for n=2k+1;
ch(x), for n=2k.

R R R
n
chC(x)dx =

n
(lnλ)−nshC(x), for n=2k+1;

(lnλ)−nchC(x), for n=2k.R R R
n
sh(x)dx =

n
ch(x), for n=2k+1;
sh(x), for n=2k.

R R R
n
sC(x)dx =

n
(lnλ)−ncC(x), for n=2k+1;

(lnλ)−nsC(x), for n=2k.

Theorem 4.5. The following identity which is similar to D’Moivre’s the-
orem is valid for the hyperbolic balancing and Lucas-balancing functions:h

chC(x)±
√
8shB(x)

in
= chC(nx)±

√
8shB(nx)

and, h
shC(x)±

√
8chB(x)

in
= shC(nx)±

√
8chB(nx)
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Proof. By using Binet’s formulas described in (2.3) again, we obtainh
chC(x) +

√
8shB(x)

in
=
³
λx+λ−x

2 +
√
8λ

x−λ−x
2
√
8

´n
= λnx

= λnx+λ−nx

2 +
√
8λ

nx+λ−nx

2
√
8

= chC(nx) +
√
8shB(nx),

which ends the proof. 2

5. Balancing matrices

Ray [14] has introduced balancing Q-matrix of order 2 whose entries are
the first three balancing numbers 0, 1 and 6 as follows:

QB =

Ã
6 −1
1 0

.

!
(5.1)

He has also proved that for all n ∈ Z, the nth power of this matrix is

Qn
B =

Ã
Bn+1 −Bn

Bn −Bn−1
.

!
(5.2)

It has also been shown in [14] that the matrix (5.2) coincides with the
Cassini formula

detQn
B = B2n −Bn+1Bn−1 = 1(5.3)

for balancing numbers.
We observe from Theorem 3.3 that, the formula shB(x)2 − shB(x +

1)shB(x − 1) = 1 is a generalization of the Cassini formula for balancing
numbers B2n −Bn+1Bn−1 = 1 for continues domain. In the present paper,
we develop a theory of balancing matrices which are the generalization of
the matrix in (5.2) in continuous domain. Based on these matrices, a new
kind of cryptography method is also considered.

5.1. Some properties of balancing matrices

The following are some valid properties of balancing matrices which can
be easily deduced by using usual properties of matrices. The recurrence
relation of balancing matrices is similar to that of balancing numbers, that
is for n ∈ Z,

Qn
B = 6Q

n−1
B −Qn−2

B ,(5.4)

rvidal
Cuadro de texto
144

rvidal
Cuadro de texto



A cryptography method based on hyperbolic balancing and Lucas ... 147

and for all positive integers m,n,

Qn
BQ

m
B = Qm

BQ
n
B = Qn+m

B .(5.5)

Based on the recurrence relation mentioned in (5.4), a representation
of the matrices Qn

B are given in Table 5. Also Table 5 gives the matrices
Qn
B and their inverses Q

−n
B in explicit form.

We observe that the inverse matrix Q−nB can easily obtain from Qn
B by

rearranging the matrix in (5.2) to diagonal elements Bn+1 and Bn−1 and
to take its diagonal elements Bn with an opposite sign. It means that the
inverse matrix Q−nB has the following form:

Q−nB =

Ã
−Bn−1 Bn

−Bn Bn+1
.

!
(5.6)

By correlation of (2.5) with the matrix described in (5.2) and (5.6) can
be written in terms of hyperbolic balancing functions as

Qn
B =

Ã
shB(n+ 1) −shB(n)
shB(n) −shB(n− 1) ,

!
(5.7)

and

Q−nB =

Ã
−shB(n− 1) shB(n)
−shB(n) shB(n+ 1)

!
(5.8)

where n is a discrete variable, n = 0,±1,±2,±3, . . . . If we replace the
discrete variable n by continuous variable x in the matrices given in (5.7)
and (5.8), we get the following unusual matrices which are the functions of
the continuous variable x.

Qn
B =

Ã
shB (n+ 1) −shB (n)
shB (n) −shB (n− 1)

!
(5.9)

and

Q−xB =

Ã
−shB(x− 1) shB(x)
−shB(x) shB(x+ 1)

.

!
(5.10)

In order to prove, the matrix of (5.10) is the inverse of the matrix given
in (5.9), we need to do the following.
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Qx
BQ

−x
B =

Ã
shB (x+ 1) −shB (x)
shB (x) −shB (x− 1)

!Ã
−shB (x− 1) shB (x)
−shB (x) shB (x+ 1)

!

=

Ã
a11 a12
a21 a22

,

!
(5.11)

where
a11 = shB(x)2 − shB(x+ 1)shB(x− 1)
a12 = shB(x+ 1)shB(x)− shB(x)shB(x+ 1)
a21 = shB(x)shB(x− 1)− shB(x− 1)shB(x)
a22 = shB(x)2 − shB(x+ 1)shB(x− 1)

We notice from (5.13) and (5.14) that,

a12 = a21 = 0.(5.12)

Also by virtue of Theorem 3.3, we obtain

a11 = a22 = 1.(5.13)

Thus, by (5.16) and (5.17), (5.7) can be reduced to

Qx
BQ

−x
B =

Ã
1 0
0 1

,

!

which is valid for any value of the variable x. It follows that (5.10) is the
inverse of (5.9).

5.2. Determinant of balancing matrices in continuous domain

By virtue of Theorem 3.3, the determinant of the matrix (5.9) is given by

det(Qx
B) = shB(x)2 − shB(x+ 1)shB(x− 1) = 1.

It is observed that, the identity det(Qx
B) = 1 is nothing but a gen-

eralization of Cassini formula for balancing matrix given in the (5.3) for
continuous domain.
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6. Cryptography using Balancing Matrices

6.1. A New Cryptography Method

So far we have introduced the direct and the inverse matrices of (5.9) and
(5.10). These matrices enable us to develop a new kind of cryptography
method that is being used to protect the initial message from the hackers.
Let the initial message is a digital signal. Recall that a digital signal is any
sequence of real numbers

a0, a1, a3, a4, a5, a6 . . . ,(6.1)

where the separate real numbers are known as readings. We consider a new
kind cryptography based on the balancing matrices described in (5.9) and
(5.10) as follows: Let us choose the first four readings a1, a2, a3, a4 of (6.1)
to form a 2× 2 matrix

M =

Ã
a1 a2
a3 a4

.

!
(6.2)

Note that the initial matrix M can be considered as plaintext [21]. Since,
there are 4! = 24 permutations to form the matrix of (6.2) from the readings
a1, a2, a3, a4, the initial step of cryptography protection of these readings
is a choice of the permutations Pi, where Pi denote the i

th permutation of
the four readings a1, a2, a3, a4. Let us choose the direct matrix of (5.2) as
enciphering matrix and its inverse from (5.6) as deciphering matrix. Based
on matrix multiplication, we now consider the following encryption and
decryption method:

Encryption: Decryption:

M ×Qx
B = E(x) E(x)×Q−xB =M

Here the matrix M is the plaintext from (6.2) that is formed according
to the permutations Pi. E(x) is the ciphertext and the matrices Qx

B and
Q−xB are respectively the enciphering and the deciphering matrices. The
variable x can be used as cryptography key or simply key which indicates
that depending on the value of key x, there is an infinite numbers of plain-
text M into ciphertext E(x).

We now prove that the described cryptography method ensures one-
valued transformation of the plaintext M into the ciphertext E and the
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ciphertext E into the plaintextM . By considering the matrix from (5.9) as
enciphering matrix, we observe that for the given value of the cryptography
key x = x1, the encryption can be represented as follows:

M×Qx
B =

Ã
a1 a2
a3 a4

!Ã
shB(x1 + 1) −shB(x1)
shB(x1) −shB(x1 − 1)

!Ã
=

e11 e12
e21 e22

= E(x),

!
(6.3)
where

e11 = a1shB(x1 + 1) + a2shB(x1),(6.4)

e12 = −a1shB(x1)− a2shB(x1 − 1),(6.5)

e21 = a3shB(x1 + 1) + a4shB(x1),(6.6)

e22 = −a3shB(x1)− a4shB(x1 − 1)(6.7)

For this case the decryption can be represented as follows:

E(x1)×Q−xB =

Ã
e11 e12
e21 e22

!Ã
−shB(x1 − 1) shB(x1)
−shB(x1) shB(x1 + 1)

!Ã
=

d11 d12
d21 d22

= D,

!
(6.8)
where

d11 = −e11shB(x1 − 1)− e12shB(x1),(6.9)

d12 = e11shB(x1) + e12shB(x1 + 1),(6.10)

d21 = −e21shB(x1 − 1)− e22shB(x1),(6.11)

d22 = e21shB(x1) + e22shB(x1 + 1)(6.12)

By using (6.4) in (6.8) and using Theorem 3.3 , we get

d11 = − (a1shB(x1 + 1) + a2shB(x1)) sB(x1−1)+(a1shB(x1) + a2shB(x1 − 1)) shB(x1),

=-a1shB(x1 + 1)shB(x1 − 1)− a2shB(x1)shB(x1 − 1) + a1[shB(x)]
2

+ a2shB(x1 − 1)shB(x1),
= a1

£
[shB(x)]2 − shB(x1 + 1)shB(x1 − 1)

¤
= a1

Similarly after corresponding transformation, one can get
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d12 = a2, d21 = a3 and d22 = a4.

Thus, the matrix D can be written as follows:

D =

Ã
d11 d12
d21 d22

!Ã
=

a1 a2
a3 a4

=M.

!
Hence, the described cryptographic method ensures one-valid transforma-
tion of the initial plaintext M at the entrance of the coder into the same
plaintext M at the exit of the decoder.

We observe that,

detE(x) = detM detQx
B,

and since detQx
B = 1, we have

detE(x) = detM.

This follows that the determinant of the matrix E(x) can be determined
identically by the determinant of the initial matrix M .

6.2. Encryption and Decryption Time

We notice from (6.3-6.7) that, the encrypted matrix can be generated by
8-multiplications and 4-additions. Therefore the total encryption time TE
is given by

TE = 84× + 44+,(6.13)

where 4× and 4+ are respectively denote the time of one multiplication
and one addition.

Analogous to (6.13), if we consider (6.8-6.12), total decryption time will
be given by

TD = 84× + 44+.(6.14)

We observe that, (6.13) involves 8-multiplications and 4-additions. The
time complexity for solving this would be O(n3), where the matrix is a
square matrix of order n. Indeed, the time complexity of computing (6.13)
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can be improved to O(n2.81) by the well known Strassen’s method.

While performing the encryption and decryption, we generally prefer
the large values (In general, the entries of the higher degree balancing ma-
trix are large) in order to make them more secure. Our main concern here
to improve the time complexity of integer multiplication when the entries
of the balancing matrix become large. The naive approach for multiplying
two n-digit numbers with base r will take O(n2) time. On the other hand,
we can use the divide and conquer approach for integer multiplication so
that the complexity can be reduced, known as Karatsuba’s algorithm.

Let φ denote the balancing n-digit number with base r from the bal-
ancing matrix and δ be an element in order r of the massage matrix. The
initial step of multiplying φ and δ involves dividing both of them into equal
parts each having n

2 -digits as follows:

φ = φL φR = r
n
2 φL + φR,

δ = δL δR = r
n
2 δL + δR.

On multiplication of φ and δ produces the result,

φ ∗ δ = rnφLδL + r
n
2 (φLδR + φRδL) + φRδR.(6.15)

Even though (6.15) involves 4 subproblems of size n
2 -digits using Karat-

suba’s insight, we only need 3 subproblems as follows:

u = φLδL,
v = φRδR,
w = (φL + φR) (δR + δL) ,

Hence (6.15) reduces to

φ ∗ δ = u · rn + w · r n2 + v.

If T (n) is the time required to multiply two n−digit numbers, then this
shows the time complexity as

T (n) = 3T (
n

2
) +O(n),

which follows that, T (n) is O(nlog2 3) i.e. O(n1.584).
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