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136 Prasanta Kumar Ray

1. Introduction

Balancing numbers were originally introduced by Behera and Panda [1] in
connection with the Diophantine equation 14+2+---+(n—1)=(n+1)+
(n+2)+--- 4+ (n +r), where, they call ‘n’ a balancing number and ‘r’
a balancer corresponds to ‘n’. The sequence of balancing numbers {B,,}
satisfies the recurrence relation

(11) Bn+1 == GBn - anl, n 2 1,

with By = 0, B; = 1. A closely associate sequence {C,,} of {B,} called as
sequence of Lucas-balancing numbers satisfies the same recurrence relation
as that of balancing numbers but with different initials, that is

(1.2) Cn+1 == 6(Jn — Cnfl, n > 1,

with Cp = 1,C; = 3. Both of the sequences {B,} and {C,} are obtained
from the Pell equation C2 —8B2 =1 [8, 10]. For details about these num-
ber sequences, one can go through [2,3,4,5,6,7, 8,9, 10, 11, 12, 13, 14, 15].

In [18], Stakhov and Rozin presented the results of some new research
on hyperbolic functions that unite the characteristics of the classical hy-
perbolic functions and the recurring Fibonacci and Lucas series. The sim-
plicity and beauty of Fibonacci numbers have motivated to develop matrix
cryptosystems, which are useful in digital communications, i.e., digital TV,
digital telephony, digital measurement, etc. One of such cryptosystems,
called as “golden cryptography” based on the golden matrices, a general-
ization of Fibonacci Q-matrices for continuous domain, was introduced by
Stakhov [18]. Later, he improved the golden cryptography by using the
golden G-matrices based on the k-Fibonacci hyperbolic functions [17].

In the present article, we introduce a new class of hyperbolic functions
known as hyperbolic balancing and hyperbolic Lucas-balancing functions
that also unite the characteristics of the classical hyperbolic functions and
the recurring balancing and Lucas-balancing numbers. Several identities
involving hyperbolic balancing and Lucas-balancing functions are also es-
tablished. Further, a new class of square matrices, a generalization of
balancing @) p-matrices for continuous domain, is considered. This class of
matrices enable us to develop a cryptography method for security purpose.
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2. Hyperbolic balancing and hyperbolic Lucas-balancing func-
tions

Behera and Panda [1] and later Panda and Ray [6] have connected balancing
and Lucas-balancing numbers with balancing constants A = 3+ /8, A™1 =
3 — /8 that are the roots of (1.1) and obtained the Binet formulas for both
these numbers as
A — AT A4 AT
2.1 B,=——F— and C), = ——.
(2.1) n Wi an n 5
Also it is observed that, both balancing and Lucas-balancing numbers
may be extended backward. For instance, the sequences B,, and B_,, are
of opposite sign, that is B, = —B_,, for all integers n. On the other hand,
the sequences C), and C_,, coincide for every integer n, that is C,, = C_,,.

Replacing the discrete variable n by the continuous variable z (x is any
real number) in (3) and based on an analogy between (3) and the classical
hyperbolic functions

we now define the hyperbolic balancing and hyperbolic Lucas-balancing
functions as follows:

Definition 2.1. Sine hyperbolic balancing and cosine hyperbolic balanc-
ing functions are respectively defined by

A \7% PR S
2 2 and chB(z) = —F=—,
NG and chB(x) NG

where A\ =34 /8 and \™1 =3 — /8.

(2.2) shB(z) =

Definition 2.2. Sine hyperbolic Lucas-balancing and cosine hyperbolic
Lucas-balancing are defined by

(2.3) shC(zx) = % and chC(z) = %

Balancing numbers and Lucas-balancing numbers are related with sine
hyperbolic balancing and cosine hyperbolic Lucas-balancing functions given
by (2.1) and (2.2) in the following way.
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(2.4) shB(n) = B,, chC(n)=C,,

where n € Z. It can also be observed that the hyperbolic balancing and
Lucas-balancing functions are connected with classical hyperbolic functions
by

shB(z) = iS sh(n\-2); chB(z) = % ch(n \- ),
(2.5) shC(z) = sh(ln X - z); chC(x) = ch(ln\- z).

Further, the hyperbolic balancing and Lucas-balancing functions are
connected among themselves by the relation:

(2.6) shB(z) = % shC(z), chB(z) = % chC(z).

The graphs of hyperbolic balancing and Lucas-balancing functions are
shown in Fig. 1 and Fig. 2. Their graphs have a symmetrical form and are
similar to the graphs of the classical hyperbolic functions. Noting that, for
the point = 0, the hyperbolic balancing cosine chB(z) takes the value
chB(0) = % whereas the hyperbolic Lucas-balancing cosine chC(x) has

the value chC(0) = 1.

N 7 1N Vi
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Figure 1: Balancing Function Figure 2: Lucas-Balancing Function

3. Identities involving hyperbolic balancing and hyperbolic
Lucas-balancing functions

In this section, we find some mathematical properties of the hyperbolic
balancing and Lucas-balancing functions resemble with that of balancing
and Lucas-balancing numbers.


Marisol Martínez
fig1-2
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Theorem 3.1. The following identities that are analogous to the recur-
rence relation for balancing numbers are valid for hyperbolic balancing
functions too. That is,

shB(x+2) = 6shB(x+1)—shB(z) and chB(z+2) = 6chB(x+1)—chB(z).

Proof. By virtue of Definition 2.1 and the recurrence relation (1.1), we

haVe )\z+l )\7171 AT\
6shB(x +1) — shB(z) =6"——F7%— - NG
_AT(BA=1) =2 (A1)
= 7

2
o )\z)\27>\7;v)\72 o )\z+27}\7172 o
= NG = 75 = shB(x + 2).

The other identity can be shown similarly.

Theorem 3.2. The following identities that are analogous to the recur-
rence relation for Lucas-balancing numbers is also valid for hyperbolic
Lucas-balancing functions:

shC(z+2) = 6shC(z+1)—shC(z) and chC(z+2) = 6chC(z+1)—chC(z).

Proof. The proof is analogous to Theorem 3.1.

Theorem 3.3. The identities that are similar to the Cassini identity B2 —
By +1Bn—1 =1 [3] is valid for hyperbolic balancing functions too. That is

shB(x)?—shB(z+1)shB(z—1) = 1 and chB(z)?>—chB(z+1)chB(z—1) = —1.

Proof. Using Definition 2.1 and as A — A~! = 21/8, we obtain

T__\—xT 2 z+1_y—z—1 yz—1__ y—z+1
shB(x)? = shB(x + 1)shB(z —1) = (¥537)" - 2" X

S ) M
G

The second identity can be proved similarly.

Theorem 3.4. The following identity that is similar to the identity 202 —
Cs, = 1 is valid for the hyperbolic Lucas-balancing functions.

2[shC(z)]? — shC(2z) = —1 and 2[chC(z)]? — chC(2z) = 1.
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Proof.  The proof is similar to Theorem 3.3.

Theorem 3.5. The following result that is similar to the identity Bn11 —
Bn—1 = 2C,, is valid for the hyperbolic balancing and Lucas-balancing
functions.

shB(z+1)—shB(z—1) = 2chC(x) and chB(z+1)—chB(z—1) = 2shC(z).

Proof. Using Binet’s formula and as A* = A\7% = 2\/§, we get the desired
result.

Theorem 3.6. The following identity that is similar to the identity 3B, +
Cy, = Byy1 is valid for the hyperbolic balancing and Lucas-balancing func-
tions.

3shB(x) + chC(x) = shB(x + 1) and 3chB(z) + shC(x) = chB(x + 1).

Proof. The proof is analogous to Theorem 3.5.

In Table 1 and Table 2, we indicate some known properties of balanc-
ing and Lucas-balancing numbers and the appropriate properties of the
hyperbolic balancing and Lucas-balancing functions for comparison.

Table 3.1:
Identities for balancing and Lucas-balancing numbers Identities for hyperbolic balancing
Byy9=6By 11 — Bn sB(x +2) = 6sB(xz + 1) — sB(x)
Bn=—-B_, sB(z) = —sB(—x)
By43 +6Bn =358y, shB(xz + 3) + 6shB(xz) = 35shB(x + 1)
B2 —Bpy1Bp_1 =1 [shB(z)]2 — shB(z 4+ 1)shB(z — 1) = 1
Bopy1 = Ble - B2 chB(2z + 1) = [chB(z + 1)]2 — [chB(x)]?
6B3,, = Bf’LH -6B3 + B2 | 6shB(3z) = [chB(z + 1)]3 — 6[shB(z)]® + [chB(z — 1)]3
Cpiy2=6Cp11 —Cn shC(x 4+ 2) = 6shC(z + 1) — shC(x)
Cn=C_p, shC(z) = —shC(—xz)
202 —1=0Cy, 2[shC(z)]? + 1 = shC(2z)
Cpy1Cp_1 —C2 =38 shC(x + 1)shC(z — 1) — [chC(x)]? = —8
Cpy1—Cp_1=168n shC(xz 4+ 1) — shC(z — 1) = 16chB(x)
3Cn +8Bn = Cpyq 3shC(zx) + 8shB(xz) = shC(xz + 1)
C2 | —C2 =8Banq1 [shC(z + 1)]2 — [shC(x)]2 = 8shB(2x + 1)
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Table 3.2:
Identities for balancing and Lucas-balancing numbers Identities for Lucas-balancing functions
By42 =6By 1 — Bn cB(x + 2) = 6cB(x + 1) — ¢B(x)
Bp =-B_, cB(z) = —cB(—x)
Bp43+6Bp =358, chB(z + 3) + 6¢hB(z) = 35chB(z + 1)
B2 — Bpi1Bp_1 =1 [chB(2)]2 — chB(x + 1)chB(z — 1) = —1
Bopt1 = B?H_l - B2 chB(2z + 1) = [shB(z + 1)]2 — [shB(x)]?
6B3,, = B;”’H_l —-6B3 + B3, 6chB(3z) = [shB(z + 1)]3 — 6[chB(z)]3 + [shB(z — 1)]3
Cpg2 =6Cp11 —Cn chC(x 4+ 2) = 6chC(x + 1) — chC(z)
Cn=C_, chC(z) = chC(—x)
202 — 1= Cyy, 2[chC(z)]2 — 1 = chC(2z)
Cpy1Cp_1 —C2 =8 chC(z + 1)chC(z — 1) — [shC(z)]? = 8
Cpy1 —Cp_1 =16Bn chC(z + 1) — chC(x — 1) = 16shB(x)
3Cn +8Bn = Cpyq 3chC(z) + 8chB(x) = chC(x + 1)
C2 1 = C} =8Bonq1 [chC(z + 1)]2 — [chC(z)]? = 8shB(2z + 1)

4. Some hyperbolic properties of the hyperbolic balancing
and Lucas-balancing functions

The hyperbolic balancing and Lucas-balancing functions have properties
that are similar to the classical hyperbolic functions.

Theorem 4.1. The following result that is similar to the identity [ch(x)]>—
[sh(x)]? = 1 is valid for the hyperbolic balancing and Lucas-balancing func-
tions.

[chC(x)]? — 8[shB(x)]> =1 and [shC(z)]? — 8[chB(z)]* = —1.

Proof. Since A*X\7% =1, we have
T —x 2 r_\—x 2
(hC@)P = 8hBE)P = (25=) -8 (55
ATHAT)2 (A" A7) TA~T — .

Il
>

Other identity can be shown similarly.

Theorem 4.2. The following identity that is similar to the result ch(x +
y) = ch(x)ch(y) + sh(x)sh(y) is valid for the hyperbolic balancing and
Lucas-balancing functions.

chC(xz +y) = chC(z)chC(y) + 8shB(x)shB(y).

Proof. By (2.1) and (2.2), we obtain
chC(w)chC(y) + 8shB(a)shB(y) = MG ALY 4 QA AN
oAty Ty ety \—(@4y) g \2ty_\e—y ) —zty g \—(z+y)
- 4

— XN hO(x +-y).
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This completes the proof.

Theorem 4.3. The following result that is similar to the identity ch(x —

y) = ch(z)ch(y) — sh(x)sh(y) is valid for the hyperbolic balancing and
Lucas-balancing functions.

chC(z +y) = chC(x)cC(y) — 8shB(x)shB(y).

Proof. The proof is analogous to Theorem 4.2.

Theorem 4.4. The following correlations that are similar to the derivative
classical hyperbolic functions
n ) ch(z), for n=2k+1; n | sh(z), for n=2k+1;
[hE)I" = sh( ), for n=2k. » leh@)]” = ch(z), for n=2k.
are valid for the derivative hyperbolic balancing and Lucas-balancing func-
<= (In \)"chC for n=2k+1;
(n ) c (x)7 or n + ’ [Chc(ﬂj)]n —

tions. [shB(x)]" = { V8
ions.  [shB(x)] {(1nA)”shB(x), for n=2k.

V8(In \)"shB(x), for n=2k+1;
(In A\)"chC(x), for n=2k.

Proof. Based on the Definitions 2.1 and 2.2, we obtain
shB(x)]! = (/\“” \}T)’ _ Xﬂln,\;\;\g—xlnx % chC/(z)
)] (/\x+>\ x) _ Axln,\a,\*wlnx = In A8 shB(z)
)" = (12 ch x) (In \)2shB(x)
)" = (A

In \W3 shB(x ) (In \)2chC(z)

ﬁ(ln A)"chC(x), for n=2k+1;
(In\)"shB(x), for n=2k.
V8(In \)"shB(x), for n=2k+1;
(In \)"chC(z), for n=2k.

shBGo] =

[chC)]" =

This ends the proof.

In Table 3 and Table 4, we indicate some known properties of classi-
cal hyperbolic functions and the appropriate properties of the hyperbolic
balancing and Lucas-balancing functions for comparison.
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Table 4.1:

Identities for classical hyperbolic functions

Identities for hyperbolic balancing

[cosh 1]2 — [sinh 1]2 =1
ch(z + y) = ch(z)ch(y) £ sh(z)sh(y)

sh(xz £ y) = sh(xz)ch(y) £ ch(x)sh(y)
ch(2z) = [ch(x)]2 + [sh(z)]?
sh(2z) = 2sh(z)ch(x)

[m@mmz{iﬂﬁ Reaoate
[m@mm:{zﬁﬁ o
h R f =2k+1;
S fenorne={ 0 i
_ h(z), for n=2k+1;
R =

[chC(xz)]% — 8[shB(z)]? = 1

ﬁchB(w + y) = chB(z)chB(y) + shB(z)shB(y)
ﬁshB(m +y) = shB(z)chB(y) + chB(z)shB(y)
ﬁchB@x) = [chB(x)]? + [shB(x)]2
ﬁshB(Qz) = 2shB(z)chB(x)
_ (InA\)"shB(z), for n=2k+1;
[chB(z)](") - { (InA\)"chB(z), for n=2k.
_ (InX\)"™"chB(x), for n=2k+1;
[ShB(I)](n) - { (InX\)"shB(z), for n=2k.
f f j‘ chB(a)de = (InX\)""™shB(z), for n=2k+1;
n (InX\)~"™chB(x), for n=2k.
J‘ J‘ J‘ shB(z)dz = (InX\)~"™chB(z), for n=2k+1;
no (InX\)""™shB(z), for n=2k.

Table 4.2:

Identities for classical hyperbolic functions

Identities for Lucas-balancing functions

[cosh 1]2 — [sinh 1]2 =1

ch(xz + y) = ch(xz)ch(y) £+ sh(z)sh(y)
sh(z £ y) = sh(z)ch(y) £ ch(xz)sh(y)
ch(2z) = [ch(2)]? + [sh(z))?

sh(2z) = 2sh(z)ch(x)

enon) = { by o e
n h(z), for n=2k+1;
fsn(@)] ) = { ihﬁﬁi for n2k,
sh(zx), for n=2k+1;
f f fn ch(z)dz = { chgzg, for n=2k.
ch(zx), for n=2k+1;
f f fn sh(z)dz = { shgm;, for n=2k.

[shC(z)]Z — 8[chB(z)]? = —1

chC(z £ y) = chC(xz)cC(y) £ shC(xz)shC(y)
sC(z £ y) = shC(xz)chC(y) + chC(xz)shC(y)
chC(2z) = [chC(x)]? + [shC(z)]?

shC(2z) = 2shC(z)chC(z)

eno@l® = { e ke
o) = £ (e e
_ (In\)~"™shC(z), for n=2k+1;
f f fn chC(z)de = { (In A)~"™chC(x), for n=2k.
f f f sC(z)dw = (InX\)~"™cC(x), for n=2k+1;
n (InX\)~"™sC(x), for n=2k.

Theorem 4.5.

The following identity which is similar to D’Moivre’s the-

orem is valid for the hyperbolic balancing and Lucas-balancing functions:

{chC’(x) + \/gshB(m)} !

and,

[ShC(:E) + \/gchB(a:)} !

chC(nz) + vV8shB(nz)

shC(nz) + v8chB(nx)
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Proof. By using Binet’s formulas described in (2.3) again, we obtain
n z —z z —z\ "N
[ChC(l‘) + \/gshB(:n)} = (% + /8222 )

2v/8
— )\TL{E
_ )\nx+A—nx )\nx+/\—nm
o 2 + V38 2V/8

= chC(nz) + /8shB(nz),
which ends the proof.

5. Balancing matrices

Ray [14] has introduced balancing Q-matrix of order 2 whose entries are
the first three balancing numbers 0, 1 and 6 as follows:

(5.1) Op = ( ? —01 )

He has also proved that for all n € Z, the n** power of this matrix is

B —-B
5.2 L= Tt "
( ) QB ( Bn _anl
It has also been shown in [14] that the matrix (5.2) coincides with the
Cassini formula

(5.3) detQ% = B> — B,1B, 1 =1

n

for balancing numbers.

We observe from Theorem 3.3 that, the formula shB(x)? — shB(x +
1)shB(x — 1) = 1 is a generalization of the Cassini formula for balancing
numbers B,Ql — Bpt1Br—1 = 1 for continues domain. In the present paper,
we develop a theory of balancing matrices which are the generalization of
the matrix in (5.2) in continuous domain. Based on these matrices, a new
kind of cryptography method is also considered.

5.1. Some properties of balancing matrices

The following are some valid properties of balancing matrices which can
be easily deduced by using usual properties of matrices. The recurrence
relation of balancing matrices is similar to that of balancing numbers, that
is for n € Z,

(5.4) Qp =6QF ' — Q5
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and for all positive integers m,n,

(5.5) QpQE = QpQE = Q™.
Based on the recurrence relation mentioned in (5.4), a representation

of the matrices Q5 are given in Table 5. Also Table 5 gives the matrices
"5 and their inverses Q5" in explicit form.

We observe that the inverse matrix Q5" can easily obtain from Q% by
rearranging the matrix in (5.2) to diagonal elements B, t; and B,_; and
to take its diagonal elements B,, with an opposite sign. It means that the
inverse matrix Q5" has the following form:

— _anl Bn
5.6 "= .
(56) @5 ( —-B, Bn1 )

By correlation of (2.5) with the matrix described in (5.2) and (5.6) can
be written in terms of hyperbolic balancing functions as

B shB(n+1)  —shB(n)
(5.7) Qb = ( shB(n) — —shB(n—1) )

and
n_ [ —shB(n—1)  shB(n)
(5:8) @5 = < —shB(n)  shB(n+1)
where n is a discrete variable, n = 0,4+1,£2,43,.... If we replace the

discrete variable n by continuous variable z in the matrices given in (5.7)
and (5.8), we get the following unusual matrices which are the functions of
the continuous variable z.

n [ shB(n+1) —shB (n)
(5.9) Qp = ( shB(n)  —shB(n—1) )
and

(e s
(5.10) Qp" = ( —shB(x)  shB(x+1) )

In order to prove, the matrix of (5.10) is the inverse of the matrix given
in (5.9), we need to do the following.
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ez [ shB(x+1)  —shB(x) —shB(zx—1)  shB(x)
598" =\ B(z)  —shB(z-1) “shB(x)  shB(z+1)

(5.11) — ( i a2 )
az1 @22

where
ai1 = shB(x)? — shB(x + 1)shB(z — 1)
a2 = shB(x + 1)shB(z) — shB(z)shB(z + 1)
az1 = shB(x)shB(x — 1) — shB(x — 1)shB(x)
ass = shB(x)? — shB(x + 1)shB(xz — 1)

We notice from (5.13) and (5.14) that,

(5.12) ajz = ag = 0.
Also by virtue of Theorem 3.3, we obtain

(513) aj1] = a2 = 1.

Thus, by (5.16) and (5.17), (5.7) can be reduced to

Q%QB%(é ?)

which is valid for any value of the variable x. It follows that (5.10) is the
inverse of (5.9).

5.2. Determinant of balancing matrices in continuous domain

By virtue of Theorem 3.3, the determinant of the matrix (5.9) is given by

det(Q%) = shB(x)?> — shB(z 4 1)shB(z — 1) = 1.

It is observed that, the identity det(Q%) = 1 is nothing but a gen-
eralization of Cassini formula for balancing matrix given in the (5.3) for
continuous domain.
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6. Cryptography using Balancing Matrices

6.1. A New Cryptography Method

So far we have introduced the direct and the inverse matrices of (5.9) and
(5.10). These matrices enable us to develop a new kind of cryptography
method that is being used to protect the initial message from the hackers.
Let the initial message is a digital signal. Recall that a digital signal is any
sequence of real numbers

(6.1) ag, 1,03, a4, 05,06 - . - ,

where the separate real numbers are known as readings. We consider a new
kind cryptography based on the balancing matrices described in (5.9) and
(5.10) as follows: Let us choose the first four readings a1, as, as, as of (6.1)
to form a 2 X 2 matrix

(6.2) M = ( a2 )
a3 a4

Note that the initial matrix M can be considered as plaintext [19]. Since,
there are 4! = 24 permutations to form the matrix of (6.2) from the readings
ai,as,as, a4, the initial step of cryptography protection of these readings
is a choice of the permutations P;, where P; denote the i permutation of
the four readings a1, as, as, ays. Let us choose the direct matrix of (5.2) as
enciphering matrix and its inverse from (5.6) as deciphering matrix. Based
on matrix multiplication, we now consider the following encryption and
decryption method:

Encryption: Decryption:
M x Qf = E(x) Ex)xQz" =M

Here the matrix M is the plaintext from (6.2) that is formed according
to the permutations P;. E(x) is the ciphertext and the matrices Q% and
Q5" are respectively the enciphering and the deciphering matrices. The
variable z can be used as cryptography key or simply key which indicates
that depending on the value of key z, there is an infinite numbers of plain-

text M into ciphertext E(x).

We now prove that the described cryptography method ensures one-
valued transformation of the plaintext M into the ciphertext F and the
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ciphertext F into the plaintext M. By considering the matrix from (5.9) as
enciphering matrix, we observe that for the given value of the cryptography
key x = x1, the encryption can be represented as follows:

e shB(z1 +1)  —shB(z1) _ en ez _
MxQp = ( az a4 ) ( shB(x1) —shB(z1 — 1) ) <_ a1 €32 —E(x),>

(6.3)

where

(6.4) e11 = a1shB(z1 + 1) + agshB(x1),
(6.5) e1o = —a1shB(x1) — agshB(x1 — 1),
(6.6) e21 = agshB(z1 + 1) + asshB(x1),
(6.7) ego = —agshB(x1) — agshB(x1 — 1)

For this case the decryption can be represented as follows:

x| enn e —shB(z1 — 1) shB(x1) o dun dip
E(wl)XQB - ( €921 €22 )( —ShB((IZl) shB(a:1+1) - d21 d22 _D7

(6.8)

where

(6.9) di1 = —e11shB(x1 — 1) — e1ashB(x1),
(6.10) dia = e11shB(z1) + erashB(z1 + 1),

(6.11) do1 = —eg1shB(x1 — 1) — egeshB(x1),
(6.12) day = ea18hB(x1) + egashB(x1 + 1)

By using (6.4) in (6.8) and using Theorem 3.3 , we get

di1 = — (a1shB(z1 + 1) + agshB(x1)) sB(x1—1)+(a1shB(z1) + agshB(z1 — 1)) shB(x1),

=-a1shB(x1 + 1)shB(z1 — 1) — agshB(z1)shB(x1 — 1) + a1[shB(z)]?
+ agshB(x1 — 1)shB(x1),
= ay [[shB(x)]? — shB(x1 + 1)shB(z; — 1)] = a;

Similarly after corresponding transformation, one can get
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d12 = ay, d21 = as and d22 = a4.

Thus, the matrix D can be written as follows:

di1 di2 ar a
_D frg = == M.
( da1  da2 as aq
Hence, the described cryptographic method ensures one-valid transforma-

tion of the initial plaintext M at the entrance of the coder into the same
plaintext M at the exit of the decoder.

We observe that,

det E(z) = det M det QF,

and since det Q% = 1, we have

det E(x) = det M.
This follows that the determinant of the matrix F(z) can be determined
identically by the determinant of the initial matrix M.
6.2. Encryption and Decryption Time

We notice from (6.3-6.7) that, the encrypted matrix can be generated by
8-multiplications and 4-additions. Therefore the total encryption time Tg
is given by

(6.13) Ty =8Ay + 4/,

where Ay and A, are respectively denote the time of one multiplication
and one addition.

Analogous to (6.13), if we consider (6.8-6.12), total decryption time will
be given by

(6.14) Tp =8Ny + 44 .

We observe that, (6.13) involves 8-multiplications and 4-additions. The
time complexity for solving this would be O(n?), where the matrix is a
square matrix of order n. Indeed, the time complexity of computing (6.13)
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281) by the well known Strassen’s method.

can be improved to O(n
While performing the encryption and decryption, we generally prefer
the large values (In general, the entries of the higher degree balancing ma-
trix are large) in order to make them more secure. Our main concern here
to improve the time complexity of integer multiplication when the entries
of the balancing matrix become large. The naive approach for multiplying
two n-digit numbers with base 7 will take O(n?) time. On the other hand,
we can use the divide and conquer approach for integer multiplication so
that the complexity can be reduced, known as Karatsuba’s algorithm.

Let ¢ denote the balancing n-digit number with base r from the bal-
ancing matrix and § be an element in order r of the massage matrix. The
initial step of multiplying ¢ and ¢§ involves dividing both of them into equal
parts each having 5-digits as follows:

d=[oL] [or|=7201+ or,
§=[6.] [0r]|=r26L+dr.

On multiplication of ¢ and ¢ produces the result,

(6.15) ¢ 8 =1"¢L0L + 12 (9LOR + OROL) + OROR-
Even though (6.15) involves 4 subproblems of size F-digits using Karat-
suba’s insight, we only need 3 subproblems as follows:

Uu = ¢L5L7
v = ¢R6R7
w = (¢r + ¢r) (Or + L),

Hence (6.15) reduces to

pxd=u-1"+w-r7 4 v,

If T'(n) is the time required to multiply two n—digit numbers, then this
shows the time complexity as

T(n) =3T(3) + O(n),

which follows that, T'(n) is O(n!°823) i.e. O(n'58%).
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Conclusion

The present article focuses on the interconnection between balancing and
Lucas-balancing numbers, hyperbolic balancing and hyperbolic Lucas-balancing
functions, and hyperbolic functions with the help of reliable mathematical
proof. Like hyperbolic Fibonacci and hyperbolic Lucas functions [16], [18],
hyperbolic balancing and hyperbolic Lucas-balancing functions needn’t re-
quire separate consideration of even and odd values for n and also these
functions are an extension of Binet’s formula for balancing and Lucas-
balancing numbers in continuous domain. As an application to this concept,
a new kind of cryptography using Balancing matrix is discussed. The main
idea of any cryptosystem is the selection of key along with faster encryption
and decryption technique. Here, using divide and conquer method it has
been shown that the encryption and decryption time can be reduced. As a
result of this, a simple, fast, robust and, reliable cryptosystem is expected.
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