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1. Introduction and preliminaries

The concept of convex function and its generalizations have been the sub-
ject of numerous studies that have provided interesting results in some
branches related to mathematics, such as geometric functional analysis,
mathematical economics, convex analysis, nonlinear optimization, linear
programming, theory of control and dynamic systems. On the other hand,
the concept of local fractional calculus (also called fractal calculus) intro-
duced by Kolwankar and Gangal [3] has received considerable attention
for its application in non-differentiable problems of science and engineer-
ing. Motivated by these applications, in 2012, Yang [11] established the
analysis of local fractional functions on fractal sets systematically, which
included local fractional calculus and the monotonicity of functions. Re-
cently, the fractal calculus has been used by Mo, Sui and Yu [6] to intro-
duce a generalization of the concept of convex function on fractal sets and
to establish inequalities of Jensen and Hermite-Hadamard for generalized
convex functions. Similarly, Sun [10] introduced the concept of generalized
harmonically convex function on fractal sets and established the respective
Hermite-Hadamard inequalities for this class of functions. This work con-
tinues in the same line of investigation of the two works mentioned above,
but in our case we introduce a generalization of the concept of a strongly
convex function on a fractal set, study some algebraic properties and es-
tablish Jensen-type and Hermite-Hadamard-type inequalities.

Strongly convex functions have been introduced by Polyak in 1966 [8]
and has been studied and generalized by different authors [1, 4, 5, 9]. Recall
the definition of this class of functions.

Definition 1.1. Let I C R be an interval and ¢ be a positive real number.
A function f : I — R is said to be strongly convex with modulus c if

fltz+ (1 =t)y) <tf(z)+ (1 - 1)f(y) —ct(l —t)(z =),
for all z,y € I and t € [0, 1].

Strongly convex functions have been used for proving the convergence
of a gradient type algorithm for minimizing a function. They play an im-
portant role in optimization theory and mathematical economics. [7, 9]

Recenty, the theory of Yang’s fractional sets [11] was introduced as
follows. For 0 < a < 1, we have following a-type set of element sets:
Z~ = {0, £1%,£2%, ...,4£n%, ...} (integer numbers a-type).
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Q~ = {m"‘ = (%)a P, qE€EZL,qF# 0} (rationals numbers a-type).
Jo = {mo‘ # (%)a :p,q € ZL,qF O} (irrational numbers a-type).
R* = Q*uJ® (real line numbers o — type).

We call fractal set to R and any subset of it. The following facts are
found in [2], [11] and [12].

If o™, b and c® belong to the set R of real line numbers, then one has
the following:

1. a® + b* and a“b® belong to the set R*.
2. a4+ =b"+a"=(a+b)*=(b+a)
3. a®+ (b* + ¢*) = (a® + b%) + .
4. a®b® = b%a® = (ab)® = (ba)®.
5. a® (b%c®) = (a®b®) ™.
6. a® (b* + ) = a“b* + a®c™.
7. a4+ 0% =04 a% =a® y a®1% = 1%* = a”.
It is important to note that in this theory the number (a?)®* € R* will be

represented by a?®.

Now we introduce some basic definitions about the local factional cal-
culus.

Definition 1.2. [11] A non-differentiable function f : R — R%, z — f(x)
is called local fractional continuous at xq, if for any € > 0, there exists
0 > 0, such that

[f(@) = flzo)| <e

holds for |x — xg| < 6, where ¢,6 € R. If a function f is local fractional
continuous on an interval I, we denote f € Cy(I).

Definition 1.3. [11] The local fractional derivative of f(x) of order « at
T = xq Is defined by

@) AN - fa)

@ =20 T—To (ZL‘ - J:O)a

f(a) (z0)

IS
8

where AY(f(z) — f(xo)) 2 T'(1 + a)(f(x) — f(xg)) and T' is the familiar
Gamma function.
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k+1 times

—_——
Let f(®)(z) = D f(z). If there exists f((-+D)(z) = D2 ... DY f(x) for
any r € I C R, then we denote f € D(;1)o(I), where k =0,1,2,....

Definition 1.4. [11] Let f € Cyla,b]. The local fractional integral of f on
the interval [a, b] of order o (denoted by aIéa) f) is defined by

1080 = = [ pea) = —— w3 (At
0 = ey L SO = ey dmy 2 ) (A"

with At = max{Atg, At1,...,Aty_1} and At; =tj 1 —tj for j =0,1,...,
N —1, wherea =ty <t <---<t; < ---<ty_1 <ty =Db is a partition
of the interval [a, b|.

Here, it follows that aléa)f =0ifa =band aléa)f = — bIlgo‘)f ifa <b.
If aI:E"‘)f there exits for any x € [a, b], then it is denoted by f € Ia(;a) [a, b].

In 2014, H. Mo et al. [6] used the local fractional calculus to introduce

the following generalized convex function.

Definition 1.5. [6] Let f : I — R®. For any x,y € I and t € [0,1], if the
following inequality

fltz+ (1 —t)y) <t f(z) + (1 - )" f(y),
holds, then f is called a generalized convex function on I.

We will denote by GC,,(I) to the set of the generalized convex functions
on I, that is to say,

GCu(I) ={f:I — R¥f is a generalized convex function on I}.

2. Main Results

In this section we introduce the concept of a strongly convex generalized
function on a fractal set with modulo ¢, study some algebraic properties
and establish Jensen-type and Hermite-Hadamard-type inequalities.

Definition 2.1. Let I C R be an interval and ¢ € Ry. A function f : I —
R“ is called generalized strongly convex with modulus c if

fltz+ (1 —t)y) <tf(z) + (1= 1) f(y) — (1 =)z —y)*,

for all z,y € I and t € [0, 1].
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Remark 2.2. Note that for particular cases of the numbers 0 < a < 1 and
c € Ry, we recover well known classical concepts of convex functions as is
shown.

1. If « = 1 then the generalized strongly convex functions are the
strongly convex functions.

2. If ¢ = 0 then the generalized strongly convex functions are the gen-
eralized convex functions.

3. If « = 1 and ¢ = 0 then the generalized strongly convex functions are
the convex functions.

The family of all generalized strongly convex functions with modulus ¢
is denoted by GSCS(I); that is,

GSCS(I) = {f : I — R™|f is generalized strongly convex with modulus c} .

Note that if f € GSCS(I) and f(0) = 0% then f(tx) < t*f(z). Also, if
f € GSC(I) then f (£54) < L) — (a2,

Theorem 2.3. If f,g € GSCZ (I), then f + g € GSCE(I).

Proof. Let f,g € GSCC2(I), ¢ >0, 2,y € I and ¢ € [0,1]. Then

(f+9lte+ (1 -ty) = flz+(1-t)y)+gltz+(1-1)y)
< O f(@)+ (1= 0 F () - g—tau -0~y

+t%(x) + (1 - )% (y)——ta( = )%z —y)*
(f( ) +9(x)) + (1 t)o‘( (v) +9())
270 (1~ 1)@ — )
(

20[
= t"(f+9)@)+ (1 -1
—c (1= 1) (2 - y) ™.

So f+geGSCS(I). O

Theorem 2.4. If f € GSCA (I), then A f € GSCS(I), when A € R
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Proof. Ifz,y €I andt € [0,1], then

A )tz + (1 = 1)y)

Xf(te+ (1 —t)y)

A [ () + (1= 04 () = (1 = 0% — )

= £ (@) + (L= )°AF () = (1 = 1) )
= ) (@) + (10T () (1)
(1= 1) (@ — ),

IN

and hence \“f € GSCS(I). O

Theorem 2.5. If f, : I — R* n € N, is a sequence of generalized
strongly convex functions with modulus ¢ converging pointwise to a function
f:1— R, then f € GSC.(I).

Proof. Letz,yel, te]0,1] and Jim fn(z) = f(x),
then

flz+ (1 —t)y) = lim fo(te+(1-1t)y)
T (2 fa(@) + (1= D) faly) — (1 = )°(2 — y)*)
= % lim fu(z) + (1 =0)% lim fa(y)
- ;;r(: (L =) —7;/)3?
= tf(2) + (1 =) f(y) — (1 = )% (x — y)**
that is, f € GSCS(I). O
Remark 2.6. If v,y € I, ¢ € [0,1] and T = tx + (1 — t)y, then we have
t*(1 =)z —y)** =tz —7)*+ (1 - )*(y — 7)™

Hence, a function f : I — R% is generalized strongly convex with modulus
c if and only if

flz+ (1 =t)y) <t*f(2)+ 1A -1)%f(y) -tz —D)* + (1 =) (y —T)°,

for all x,y € I and t € [0,1]. This fact serve as motivation to establish a
generalization of the version of the discrete Jensen-type inequality given in

[5]
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Theorem 2.7 (generalized Jensen-type inequality). Assume that f €
n

GSCS(I). Then for any z; € I and t; € [0,1] (i = 1,2,...,n) with Zti =1
i=1

n
and T = Ztixi, we have
i=1

f (i ti$i> < i t?f (.’L’z) —c® i t?(.’L‘i — T)2a.
=1 =1 =1

Proof. The proof is by induction on n. When n = 2, we have

2
f (Z tﬂ‘i) = f(tiz1 +taxe) = f (tiz1 + (1 — t1)x2)
i1

< 9 f(m2) + (1 —t1)* f(z2) — (t? (21— 7)* + (1= t1)™ (w2 — T)m)

= 18 f (@) + (1= 1) f(wa) — (£ (21 — 7> + 145 (22— 7)™)
2

2
= D tf (i) — Dt (zi —T),
=1

i=1

2
where T = Z tix;.
i=1

Assume that for n = k the inequality is also true, i.e. for any z1, o, ..., 2 €
k

Iand t; € [0,1] (i = 1,2,....,k) with Y t; = 1, we have
=1

k k k
f (Z tﬂi) < NS () — Yt (=),
i=1 i=1 i=1

k
where T = Z tiz;.
i=1

Now let us verify that for n = k+1 the inequality is true. If z1, xa, ..., xk,
k+1

zky1 € T and t; € [0,1] (i = 1,2,...,k,k 4+ 1) with Y ¢; = 1, then let
i=1
k+1 k . '
T = Ztﬂi and § = Z)\izni, where \; = ————. By the generalized
i=1 =1 1 — k1

strongly convexity of f, we have
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k+1
f (Z tm) = [ (tr1zie + (1= teg1)y)

1=1
tipf (@et1) + (1= te1)” f (7)
—c [t (@ =)+ (L= tr)* (7 - D)™

VAN

k
Since Z A; = 1, then by inductive hypothesis it follows that
i=1

k+1

/ (Z tiafz') <t f (@) + (1= teg1)® lz A f (i) — CQZAQ 7) a]
=1

—e 1 (@aer = B+ (L= ta)* (7~ @2“}

k k
=t f @) + D t0f () — Y8 (m —7)*

i=1 =1

k o
— i (Tp1 — ) o (Z tz) W - f
k+1 k
= @) - Yt (@ -9 + G-
=1 =1
—ct 1y (Tpyr — T
k+1 k
= St () — Yt (i - 7)™ = 2 (2 - )" (7 - 7))
=1

1=1

—ctf .y (ap — )

k+1 k ) 1,
= t5f (x;) — @ t‘?‘{x—f C 2% (g — )
; 7 ( Z) ;Z ( ? ) ( ? ) (1—tk+1)a
(T — 211)"] — Caf%ﬂ (Tpq1 — T)Qa
k+1
_ Ztaf z; —caZtO‘ T)% — 8 (2py1 — T)%
k
+29¢0 1 (T — @) Z A (z; — )
i=1
k+1 k+1

- Z tlaf (fUz) —c® Z tf‘ (-Tz _ T)Qa
=1 i=1
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@ k
+2°c 1 (T — wp41) [(Z Ai 5'31> ~7 ) A?}
i=1

k+1 k+1
— Z taf l'z e Z ta + 2% atk—l—l ( $k+1)a (?a _ —ala)
k+1 k:+1

= D S () — Y (i — D)
i=1 i=1
Hence the inequality holds for n = k 4+ 1, and thus for all n. O

Theorem 2.8. A function f : I — R% is generalized strongly convex
with modulus ¢ if and only if the function g : I — R defined by g(x) =
f(z) — c*a? is generalized convex.

Proof. Suppose that f € GSCS(I), then

gtz +(L—t)y) = flto+1—ty) —c(te+ (1 - t)y)*

tf (@) + (1= 6)"f(y) — (L= 1) (2 — 9)** — *(ta + (1 - t)y)**

tf (@) + (1= 6)"f(y) — (1= 1) (2 — 2%y +477)

Ca(t2a$2a+2ata a(l )aya+(1 )204 204)

taf(l‘) + (1 _ t)af(y) _ Cata( 200 90 y + y2a _ tal,Qoe L T

_tayQa) _ Ca(t2al,2a + Qatamaya _ Qatanaya + y2a _ QatocyQa + t2ay2o<)

— taf($) + (1 o t)af(y) o Cata$2a + QQCQtQIana . CatayZOz + Cozt2a$2a
_ou atQOzxaya + Cat2ay2a o Cat2ax2a o Qacatozxaya + Qacat2a$aya
Cay2a + oa atay2a o Cat2ay2a

— (taf( ) 4%y 2a) + (1 o t)o‘f(y) o Catay2a Cay2a + 2acatay2a

ata

IN

= 1 (fla) = ™) + (L= 1) f(y) — P> + 1y
= t*(f(2) - 0%2“)+(1—t)”f(y)—<1 Bty
= (f(x) "2) + (1= )*(f(y) — ™)

= t%g(x) + (1 - 1)%(y),

for all z,y € I and ¢ € [0,1]. This shows that g € GCS(I).
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Conversely, assume that g € GC5(I). Then
gtz + (1 —t)y) <t%g(z) + (1 —1)%g(y),
for all ,y € I and t € [0, 1]; that is,
Flta+(1—t)y)—c (o (1= <1 (F(@) — ) +(1-0)(f(y) ™),

for all z,y € I and t € [0,1]. From the above formula it follows that

flz+ (1 —t)y) < t*f(x) — 2> + (1 - 1) fy) — (1 — )% y*

+Ca(t2ax2o¢ +2ata(1 t)a$aya +( )Qay2a)
= t°f(x) + (1= 1) f(y) — 120> — (1 - 1)*y*
+c 2022 £ 2% (1 — 1)y + (1 — t)2y2
= t%f(x) + (1 =) fy) — (1 — 1)z
+2%cM (1 — ¢) 2%y — (1 - 1) (1"
= tf(z) + (1 —t)%f(y) — %1 —t)*z?
+29C (1 — ) x%y® — 1% (1 — 1)y
= tf(2) + (1= ) f(y) — (1 = 1) (2 — 22" + y**)
= tf(x) + (1= 1) f(y) — (1 = )% (2 — y)**

for all x,y € I and ¢ € [0,1]. Thus, we have f € GSCS(I).
|

— (1 —t)*)y*

Theorem 2.9. Let f : I — R* Then f € GSCS(I) if and only if the
inequality

f(x1) = f(z2)

(x1 — 22)*

flzs) — f(z2)

(z3 — 22)*

< —c*(z3 — 21)”

holds, for any x1,x2,x3 € I with x1 < s < x3.

Proof. Suppose that f € GSCS(1), then by Theorem 2.8, this is equiva-
lent to saying that the function g : I — R defined by g(z) = f(x) — c*22®
is generalized convex. By [6, Theorem 8], the above is equivalent to the
fact that the inequality

flw1) = c*ai® — fwg) + a3 _ f(xs) — 23" — f(g) + 23"
(21 — x2)" - (z3 — 2)®




Strongly convexity on fractal sets and some inequalities 11
holds, for any x1,x2,x3 € I with 21 < x5 < x3. Equivalently, we have

fz1) = f(z2)

fxg) = flwa) o [(28 —29) (25 +a5) (25 —af)(f + 27)

@ =22 = (@ O (B-a§) (B -a)
o f(!]?g)— (372 o B «
= — c*(z3 — x1)
(z3 — 12)

O

Remark 2.10. Proceeding as in the proof of Theorem 2.4, it is shown that
f € GSCS(I) if and only if

f(x2) — f(z1)

—c*(xz —mx)* <

(X9 — x1)® (22 — 1) (z3 — 21)*
flxs) = flz1) _ flzs) — f=2) o
= (3 — 1)~ = (r3 — m2)> ez =)
o @) = flzo)
- ($3 — xg)a ’

for any x1,x9,x3 € I with 1 < 12 < T3.

Theorem 2.11 (generalized Hermite-Hadamard-type inequality).
It f € I!a,b] and f € GSC[a, b], then

f <a+b> _ o <a+b>2a r( +o;) [a éa)f(x) B CQF(I + 2a) (b — g3

2 2 = (b—a) (14 3a)
o )+ f0) o (a4
S 9a C 9a .

Proof. Suppose that [ € Iaga) [a,b] and f € GSCE[a, b], then by Theorem
2.8, this is equivalent to saying that the function g : [a,b] — R* defined by
g(x) = f(z) — c*x®* is generalized convex. By [6, Theorem 14], the above
implies that the generalized Hermite-Hadamard inequality holds for g; i.e.

a+b F'l+ao) (
<
9( 2 >— b —a)p b

g(a) +g(b)
g(z) < BT

Equivalently, we have
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a+b o (a+ Db\ F'l+ao) ( o %
1(57) () = Geapr AW e
fla) + f(b) o (e 40

T_C T .

IN

Consequently,

/ <a—|—b> _ <a+b)2a . l+a) I () oL+ )T(1 +2a) (b3 — a3@)

2 2 - (b-a) I'(1+3a) b—a)
¢ L0 (Ei)
o 2 204
Thus, we have
atb) ,(atb)* FA+a) [ ) JL420), 50 s
f< 2 >_C ( 2 > = W[afb flz) — m(bB )
< M_Ca<a2a+b2a>.
2¢ 2
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